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Abstract Type-II matrices are nonzero complex matrices that were introduced in connection
with spin models for link invariants. Type-II matrices have been found in connection with sym-
metric designs, sets of equiangular lines, strongly regular graphs, and some distance regular
graphs. We investigate weighted complete and strongly regular graphs, and show that type-II
matrices arise in this setting as well.
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1 Introduction

Spin models were introduced by V. Jones in [11] to construct link invariants. Nomura ([13]) found
that matrices satisfying the type-II condition of Jones had nice properties, in particular that a
Bose-Mesner algebra (now known as the Nomura algebra) could be constructed from any such
type-II matrix. Because a spin model is contained in its Nomura algebra, it is natural to consider
type-II matrices within the Bose-Mesner algebras of known association schemes. Chan and Godsil
in [5] investigated the strongly regular graphs and found that up to 6 type-II matrices are found
in their Bose-Mesner algebras. Further, they showed that type-II matrices arise in connection
with other combinatorial structures, such as symmetric designs, sets of equiangular lines, and
antipodal distance regular graphs with diameter 3.

The goal of this paper is to demonstrate that type-II matrices are also found in conjunction
with certain weights that are regular (in the sense of Higman in [8]) on association schemes of
rank 2 or 3. These are schemes in which the base graphs have edges weighted by ±1, and satisfy
suitable conditions to make the linear span of the weighted adjacency matrices a semi-simple
algebra.

In Section 2, we define the terms necessary to make the previous paragraph intelligible.
We have benefited from accessible treatments of this introductory material in [10], [14], and
[5]. First, we look at spin models and the closely related type-II matrices. Then, we define
association schemes, which are essentially synonymous with Bose-Mesner algebras. We look next
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at the connection between type-II matrices and association schemes, via the Nomura algebra.
In the last part of this section, we define regular weights on association schemes. Section 3 is a
discussion of the type-II matrices found in the rank 2 case, where a regular weight with values ±1
is equivalent to a regular 2-graph. In Section 4, the rank 3 case is treated. Here the association
scheme is a complementary pair of strongly regular graphs. The general state of affairs is given
and the remainder of the section is devoted to more explicit results pertaining to the lattice
graph family of strongly regular graphs. Section 6 contains additional examples of ranks 2 and
3.

2 Preliminaries

To define spin models we require the notion of a Schur inverse. We will use the term ‘Schur
product’ to denote entry-wise multiplication of matrices, also called the Hadamard product. A
matrix W with nonzero entries is Schur invertible, meaning it has an inverse W (−) with respect
to the Schur product. That is, W ◦W (−) = J where J is the all ones matrix.

Definition. An n by n complex matrix W is called a type-II matrix if it is Schur invertible and

WW (−)T = nI.

Examples. The following are well-known type-II matrices:

1. The character table of an abelian group;
2. Hadamard matrices: entries are ±1 and HHT = nI;
3. tensors of type-II matrices;
4. the Potts model: set α = −β−3 where β satisfies β2 + β−2 +

√
n = 0. W := αI + β(J − I) is

a type-II matrix.

A type-II matrix may be obtained from another by scaling and/or by permutation. That is, if W
is type II, ∆ and ∆′ are invertible diagonal matrices, and P and P ′ are permutation matrices,
then ∆W∆′ and PWP ′ are type-II matrices.

A spin model is a type-II matrix that satisfies an additional (“type III”) condition which
presents itself in a natural way via the Nomura algebra we define in the next section.

2.1 The Nomura algebra

Let W be a type-II matrix. Define column vectors ([13]):

(Wi/j)x = Wx,i ·W (−)
x,j

=
Wx,i

Wx,j
.

Observe that this is just the Schur ratio of columns i and j which will of course be the all ones
vector when i = j.
Definition. The Nomura algebra of a Schur-invertible square matrix W is

NW := {M ∈ Cn×n | Wi/j is an eigenvector of M, for all i, j}

The subscript will be suppressed when clarity allows. We have the following properties of N
([13]):
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1. N is a matrix algebra.
2. I ∈ N .
3. W is type II ⇐⇒ J ∈ N .
4. W is type II =⇒ N is commutative.
5. W is a spin model ⇐⇒ cW ∈ N for some nonzero scalar c.

Example. For the Potts model, Wi/j (i 6= j) is a vector with entries α/β, β/α, and n− 2 1’s.
Since Wi/j is an eigenvector of W , W ∈ N thus W is a spin model.

2.2 Association schemes

Let X be a finite set. Define a set of relations on X as matrices {Ai} with rows and columns
indexed by X , where i ranges over the indexing set I := {0, 1, . . . , d}.
Definition. A d-class association scheme X = (X, {Ai}, I) is a finite set X together with a set
of (0, 1) matrices {Ai} indexed by the set I, satisfying:

1.
∑

i∈I

Ai = J ;

2. A0 = I;
3. AT

i = Ai∗ for some i∗ ∈ I;
4. AiAj = AjAi;

5. AiAj =
∑

k

pkijAk.

This last condition says that the linear span of the Ai over C is closed under multiplication. Thus
A := 〈Ai〉 forms a commutative, associative matrix algebra called the Bose-Mesner algebra of the
scheme. The intersection numbers are the constants pkij defined by (5). There is combinatorial
significance to these which we do not make use of here. The interested reader should see [2], [4],
[6] for more. The intersection matrices,

Mj :=
(

pkij
)

i,k∈I
(j ∈ I)

store these numbers. More importantly, the regular representation Aj 7→ Mj is an isomorphism
of (commutative) associative algebras; we take advantage of this fact to calculate the character-
multiplicity table of A. That is, A is semi-simple, thus decomposes into a direct sum of simple
ideals. Commutativity ensures that the irreducible constituents of the standard character are
linear, the end result being that eigenvalues and their multiplicities for {Aj} may be computed
from {Mj}.

The simplest association scheme is the 1-class scheme, consisting of I and J− I. As the latter
is the adjacency matrix of the complete graph on X , we see that a 1-class scheme is equivalent
to Kn. The rank of a scheme is d+ 1, the number of classes including the trivial one.

An association scheme with 2 classes consists of a strongly regular graph and its complement,
along with the identity. This may in fact be taken as the definition of a strongly regular graph,
but the usual definition follows.

Definition. A strongly regular graph (SRG) is a regular graph, neither complete nor null, with
the number of vertices adjacent to two given vertices, x and y, depending only on whether or
not x and y are adjacent.

In the context of an SRG, n = |X | will denote the number of vertices, k the valency, and
l = n − k − 1 the valency of the complement. The parameters of an SRG are usually given as
(n, k = p011, p

1
11, p

2
11), all others being determined by these. Below we shall consider the pentagon,

the triangular graphs, and the lattice graphs, all of which are strongly regular.
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2.3 Theorem of Nomura

The following theorem of Nomura and Jaeger et. al. ([13], [10]) establishes a connection between
type-II matrices and association schemes.

Theorem 2.1. If W is a type-II matrix, NW is the Bose-Mesner algebra of an association
scheme.

This means that NW is a commutative matrix algebra containing I and J , closed under the Schur
product, with a basis {Ai} of (0, 1) matrices as in the previous section. This result is important
as it tells us that every spin model can be found inside a Bose-Mesner algebra. As pointed out
in [5], there are finitely many association schemes for a given n.

2.4 Weights

In this section we define regular weights on association schemes, which were introduced by D.G.
Higman ([8]) in the more general context of coherent configurations. The intent here is to show
that these constitute a nesting ground for type-II matrices that are generally not spin models.
The focus of this work is weights of full rank with values ±1 on schemes of rank 2 and 3. Those
of rank 2 are equivalent to regular 2-graphs which have been investigated by Taylor, Seidel,
Bussemaker and others ([21], [17], [20], [19], [3]).

Definition. A 2-graph (X,∆) is a set X of vertices and a subset ∆ of the triples from X , called
odd triples, such that every 4-set contains an even number of odd triples.

A 2-graph is regular if each pair of vertices is in a fixed number of odd triples. We refer to a
regular 2-graph by its parameters (n, a), where n is the number of vertices and a is the number
of odd triples containing a given pair.

From any simple graph Γ we may construct a 2-graph by designating the triples with an
odd number of edges from Γ to be the odd triples. As ∆ is invariant under Seidel switching—
interchanging adjacencies and non-adjacencies for any vertex—we see that a 2-graph may be
viewed as a switching class of graphs. In fact, these two sets are in one-to-one correspondence.

We form the Seidel matrix of a graph Γ by setting the (x, y) entry to be 0 if x = y, −1 if x is
adjacent to y, and 1 otherwise. Then switching Γ on a subset of the vertices is accomplished via
a similarity transform by a diagonal matrix with ±1 on the diagonal. Thus switching-equivalent
graphs have the same spectrum, so the spectrum of a 2-graph is well-defined.

The Seidel matrix of a graph may also be interpreted as a weight (with values±1) on the edges
of the complete graph. In this interpretation, Higman’s notion of a regular weight generalizes the
regular 2-graph.

Let Ut be the set of complex tth roots of unity. A weight with values in Ut is a 2-cochain
ω ∈ C2(X,Ut), which we will view as a matrix with rows and columns indexed byX . In particular,
this means that ω is Hermitian with unit diagonal, and that ω(−)T = ω. For the present paper
we work with t = 2, with one exception.

The support of a matrix M , supp(M), is the set of indices on which it is nonzero. Weights
with values in Ut are thus considered to have full support.

The standard coboundary operator defines a 3-cochain δω, giving a weight to each triple of
points, or triangle, by

δω(x, y, z) = ω(x, y)ω(x, z)ω(y, z).

We next define regularity of a weight ω on an association scheme X . It will be convenient
to refer to a triple of points (x, y, z) ∈ X3 as a triangle of type k

ij if (x, y) belongs to class i
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(equivalently, Ai(x, y) = 1), (y, z) belongs to class j, and (x, z) to class k. The weight of triangle
(x, y, x) is δω(x, y, z). Next, for (x, z) in class k, we put

βij(x, z, α) :=
∣

∣

{

y | (x, y, z) has type k
ij and weight α

}∣

∣ .

The weight ω is regular on X if, for fixed i, j, and α, βij(x, z, α) depends only on the class k,
not the choice of (x, z) in that class. In this case we write βk

ij(α).
The switching class of ω is the set of matrices obtained via similarity transform by a diagonal

matrix with entries in Ut. The importance of this is that switching-equivalent weights have the
same coboundary, hence a regular weight is unique up to switching.

Observe that a regular weight with values ±1 on the 1-class scheme given by Kn represents
a regular 2-graph, with β1

11(−1) the number of odd triples containing a given pair of vertices.
Define the weighted adjacency matrices

Aω
i := ω ◦Ai,

noting that ω is just the sum of these. It follows from regularity that the Aω
i span a matrix

algebra with structure constants βk
ij . That is,

Aω
i A

ω
j =

∑

k

βk
ijA

ω
k , where βk

ij =
∑

α

αβk
ij(α).

Observe that βk
ij is the sum of the weights of all triangles of type k

ij for a fixed (x, z) in class

k. Note also that
∑

α

βk
ij(α) = pkij . The weighted intersection numbers are therefore bounded in

absolute value by the ordinary intersection numbers.
The weighted Bose-Mesner algebra Aω := 〈Aω

i 〉 is a semi-simple associative algebra, commu-
tative if the scheme is symmetric and the weight real-valued. Again, the regular representation
Aω

j 7→ Mω
j :=

(

βk
ij

)

i,j∈I
is an isomorphism of associative algebras. The rank of a weight is the

number of indices i for which Aω
i is nonzero. Since our weights have full support, this coincides

with the rank of the underlying association scheme. In the present paper, the schemes will be
rank 2 and 3 and symmetric. Hence the Aω

i are simultaneously diagonalizable with eigenvalues
and multiplicities determined from Mω

i .

2.5 Trivial weights

A regular weight ω on a scheme X will be called trivial if Aω
i = ciAi with ci ∈ C, for all i, as

this implies Aω = A. It is possible that a regular weight ω on X is trivial on some fission scheme
of X , or more generally (remove axiom 4 and replace 2 by:

∑

i∈Ω Ai = I,Ω ⊆ I) a coherent
configuration that is a fission of X . A coherent configuration (CC) is homogeneous if |Ω| = 1;
an association scheme is therefore a homogeneous, commutative CC. The algebra 〈Ai〉C is called
the coherent (or cellular) algebra of the configuration ([7], [12]).

Definition. The coherent closure of a matrix X , ccl(X), is the intersection of all coherent
algebras containing X .

This is well-defined because the intersection of two coherent algebras is coherent, and is
nonempty because the full matrix algebra Mn(C) is coherent and contains X .

Proposition 2.1. Let ω be a regular weight on X = (X, {Ai}). Setting B :=ccl(ω) and letting
Y := (X, {Bi}) be the underlying CC, we have:

1. ω is trivial on Y;
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2. ω is trivial on a CC Z if and only if Z is a fission of Y.
Proof. 1. Define matrices Aω

i (α) by

(Aω
i (α))x,y :=

{

1 (Aω
i )x,y = α,

0 otherwise

so that Aω
i =

∑

αAω
i (α). For each i and α, ccl(ω) contains Aω

i (α), by the Schur-Wielandt
principle (6.5 in [12]). Write Aω

i (α) =
∑

j cjBj . Because the Bj ’s have non-overlapping sup-
ports, and entries on both sides of the equation are 0 or 1, cj = 0 or 1 for all j. Recalling
that

∑

i,α

Aω
i (α) = J =

∑

j

Bj,

we find that for each j, there exists i such that Aω
i (α) ◦ Bj 6= 0. This implies cj = 1 in the

expression for Aω
i (α), and Aω

i (α) ◦ Bj = Bj . Thus supp(Bj) ⊆ supp(Aω
i (α)). We conclude

that ω is constant on Bj , hence trivial on Y.
2. Suppose ω is trivial on Z = (X, {Ci}) with coherent algebra C. Then ω ◦Ci = αiCi for some

αi ∈ Ut. We have

ω = ω ◦ J =
∑

i

ω ◦ Ci =
∑

i

αiCi ∈ C.

Now B ⊆ C by definition of coherent closure. It follows that Z is a fission of Y.
The other direction is immediate.

Remark.
Switching does not fix ccl(ω). For example, five weights in the switching class of the Petersen

graph can be found with coherent closures of dimensions 3, 6, 15, 18, and 22.

Theorem 2.2. Let W =
∑

i αiA
ω
i be a type-II matrix in Aω where ω is regular with values in

Ut, αi ∈ C, and αt
i 6= αt

j for i 6= j. Then W is a spin model if and only if Aω ⊆ NW .

Proof. Suppose W ∈ N = NW . Since N is a coherent algebra, ccl(W ) ⊆ N . W has distinct
entries on the supports of Aω

i and Aω
j for i 6= j because for ui, uj ∈ Ut,

αiui = αjuj =⇒ αi

αj
∈ Ut.

By the Schur-Wielandt principle, Aω
i ∈ ccl(W ) ⊆ N for all i, hence Aω ⊆ N .

2.6 Type-II matrices in weighted Bose-Mesner algebras

As mentioned, two regular weights ω1 and ω2 on the association scheme A may be equivalent
under switching, meaning multiplying on the left and the right by a diagonal matrix. In the
type-II matrix literature, this is generally referred to as scaling and is not restricted to ±1’s
(nor to operating in the same way on rows and columns). However, for our purposes the scaling
matrix will always have entries ±1 on the diagonal.

Switching changes the edge weights, but has no effect on the basic graphs of the underlying
association scheme. Let ω and ω′ be switching-equivalent weights so that ω′ = DωD for some
diagonal matrix D. The algebra Aω′

is isomorphic to Aω and both have A as the Bose-Mesner
algebra of the underlying scheme. For any type-II matrix W in Aω, the equivalent type-II matrix
W ′ := DWD is contained in Aω′

. All of this is completely straight-forward. Now, consider
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the Nomura algebras for W and W ′. Scaling almost preserves the vectors Wi/j . Specifically,
it preserves them up to multiplication by −1. Hence the Nomura algebras NW and NW ′ are
identical. It can happen, and we give an explicit example in the next section, that W ′ is contained
in NW ′ = NW while W is not. A type-II matrix W is a spin model if and only if cW ∈ NW .
Technically, then, W ′ is a spin model while W is not, even though they are equivalent.

The question of whether a given type-II matrix is equivalent to a spin model is therefore not
a trivial one, even when the explicit vectors Wi/j have been calculated. One method, for which
we are grateful to a referee, is to use the modular invariance equation (see Prop. 12 in [10] and
Section 3.2 in [1]) to test for spin models inside NW , and if one is found determine whether it is
equivalent to W .

If a weight ω is regular on a scheme X = (X, {Ai}) with values in Ut, then

(Aω
i )

(−)T = (ω ◦Ai)
T = ωT ◦Ai∗ = Aω

i∗ ,

as ω is Hermitian. For a type-II matrix W in Aω, the condition WW (−)T = nI reduces to

∑

i

αiA
ω
i ·
∑

i

1

αi
Aω

i∗ = nI.

We apply this to rank 2 and 3 weights in Sections 3 and 4 respectively.

3 Rank 2 weights

Let ω be a regular weight on Kn with A1 = J − I and A the 2-dimensional Bose-Mesner algebra
of n by n matrices. The fact that (I +Aω

1 )
2 is in the span of I and Aω

1 implies that the minimal
polynomial of Aω

1 must be quadratic. We have

(Aω
1 )

2 = β0
11I + β1

11A
ω
1

= (n− 1)I +
(

β1
11(1)− β1

11(−1)
)

Aω
1

= (n− 1)I + (n− 2a− 2)Aω
1 .

Thus, β1
11 = n − 2a − 2. In Section 5 we will encounter 2-graphs along with regular weights on

the lattice graphs. To avoid confusion, we will use C for the matrix of the 2-graph and write
C2 = (n − 1)I + AC, where A = n − 2a − 2. Note that A is an integer—we will need this in
Section 5.2.

3.1 Type-II matrices associated with rank 2 weights

Let C be the matrix of a regular 2-graph (n, a) as above. C has entries ±1 off the diagonal and
is symmetric, thus the matrix I + αC is type II if and only if

(I + αC)(I + 1/αC) = nI.

But this occurs when α+
1

α
+A = 0 which is equivalent to α2 + Aα + 1 = 0. Hence there are

exactly two type-II matrices associated with the regular 2-graph when A2 6= 4, and exactly one
otherwise. These type-II matrices are generalized conference matrices, defined in [5], and this
result is a special case of Theorem 7.3 of [5].

In summary, type-II matrices associated with regular 2-graphs are given by

I + αC where α =
1

2

(

−A±
√

A2 − 4
)

.
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Remark. When A = 0, we have the conference 2-graphs. The type-II matrices associated with a
conference 2-graph are I ± iC.
Example. The 2-graph with parameters (n,A) = (16,−2) is unique. Using matrices given in [3]
we construct the associated type-II matrix W = I + C. Here ‘+’ represents 1 and ‘-’ represents
−1.























































+ − − − − − − + + + + + + + + +
− + − − + + + − − − + + + + + +
− − + − + + + + + + − − − + + +
− − − + + + + + + + + + + − − −
− + + + + − − − + + − + + − + +
− + + + − + − + − + + − + + − +
− + + + − − + + + − + + − + + −
+ − + + − + + + − − − + + − + +
+ − + + + − + − + − + − + + − +
+ − + + + + − − − + + + − + + −
+ + − + − + + − + + + − − − + +
+ + − + + − + + − + − + − + − +
+ + − + + + − + + − − − + + + −
+ + + − − + + − + + − + + + − −
+ + + − + − + + − + + − + − + −
+ + + − + + − + + − + + − − − +























































Computing N in Maple, we find dim(N ) = 16, and W is a spin model. Regarding the
discussion of switching in Section 2.6, let W ′ be the type-II matrix obtained by switching W on
any vertex. Then W ′ is not a spin model, as is easily seen from the fact that the row sums are
not constant and therefore j (the all ones vector) is not an eigenvector. The coherent closure of
W is a rank 6 association scheme: Aω

2 (1) splits into two (0, 1) matrices which, along with the
remaining Aω

i (α), form the basic graphs of a non-p-polynomial scheme.
The type-II matrix W is a Hadamard matrix when α = ±1, and this happens precisely when

A = ±2. The Nomura algebras for these have been investigated in [10]. There exist Hadamard
matrices of order 2n whose Nomura algebras have dimension 2n; the example above is an instance
of this family with n = 4. In fact, the Nomura algebra is a product of 4 copies of the trivial
Bose-Mesner algebra. When n ≥ 12 and n ≡ 4 (mod 8), the Nomura algebras are trivial.

Theorem 3.1. Let W be a type-II matrix associated with a rank 2 regular weight. If W is not
a Hadamard matrix, then NW is trivial.

Proof. Let C be a matrix of the 2-graph with C1j = 1 for all j. (Use scaling to get C into this
form.) Put W = I + αC as before, and consider the set {Wi/1}. These are eigenvectors for NW

by definition, and form a linearly independent set by (23) of [10]. For i 6= j and i, j 6= 1, we make
the claim: if Wi/1 ⊥ Wj/1 then W is a Hadamard matrix. Indeed,

Wi/1 ·Wj/1 =
∑

k

Wi/1[k]Wj/1[k]

=
Wii

Wi1
· Wij

Wi1
+

Wji

Wj1
· Wjj

Wj1
+
∑

k 6=i,j

WkiWkj

Wk1Wk1

=
2

α2
Wij + α2C1iC1j +

∑

k 6=1,i,j

CkiCkj

=
2

α
Cij + α2 − 1 +

∑

k

CkiCkj since Cii = 0 and C1i = 1,
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=
2

α
Cij + α2 − 1 +ACij since the sum above is just the i, j entry of C2,

=

(

2

α
+A

)

Cij + α2 − 1.

All non-diagonal entries of C are ±1. Hence Wi/1 ⊥ Wj/1 only when 2
α + A+ α2 − 1 = 0 or

− 2
α −A+α2− 1 = 0. Since α is a root of x2 +Ax+1, the first case implies 2

α +A−Aα− 2 = 0,
which gives α = 1 or − 2

A . The second case implies 2
α + A+ Aα+ 2 = 0, giving α = −1 or − 2

A .
If α = − 2

A then A = ±2 and α = ±1. Thus both cases reduce to α = ±1 and W is a Hadamard
matrix. This proves the claim.

When W is not Hadamard, the vectors Wi/1 for i > 1 must all belong to the same eigenspace
of any matrix in NW . Hence NW has only two eigenspaces, and is therefore of dimension 2.

Remark.

Combining this theorem with the results on Hadamard matrices above, we conclude that the
only possibly interesting Nomura algebras associated with regular 2-graphs occur when A = ±2
and n < 12 or n ≡ 0 (mod 8).

4 Rank 3 weights

For a given SRG Γ , suppose we have on hand a regular weight ω, with notation as in Section
2.4. The weighted intersection matrices are written

Mω
0 = I, Mω

1 =





1
k A B
C D



 , Mω
2 =





1
C D

l E F



 .

The parameters A–F are standing in for the corresponding βk
ij ’s for convenience. It can be shown

([8]) that C = Bl/k and E = Dl/k.

4.1 Type-II matrices in Aω

Theorem 4.1. The weighted Bose-Mesner algebra Aω of a regular weight with values in Ut on
a strongly regular graph contains type-II matrices I + αAω

1 + βAω
2 , where

α =
1

2

(

X ±
√

X2 − 4
)

, β =
1

2

(

Z ±
√

Z2 − 4
)

,

with

X = − l

k
BY −A− l

k
D,

Z = −DY −B − F,
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and Y a root of the cubic:

l

k
BDY 3 +

[(

l

k
− 1

)(

D2 −B2 l

k

)

+
l

k
BF +DA− 1

]

Y 2+

[(

1− 2l

k

)

AB +AF +

(

l

k

(

1− 2l

k

)

− 2

)

BD +

(

l

k
− 2

)

DF

]

Y

−
(

A+
l

k
D

)2

− (B + F )2 + 4 = 0.

Proof. Set W = I +αAω
1 + βAω

2 with α and β arbitrary complex numbers. Requiring that W be
type II means WW (−)T = nI. This gives

WW (−)T = (I + αAω
1 + βAω

2 )

(

I +
1

α
Aω

1 +
1

β
Aω

2

)

,

nI = I +

(

α+
1

α

)

Aω
1 +

(

β +
1

β

)

Aω
2 + (Aω

1 )
2 +

(

α

β
+

β

α

)

Aω
1A

ω
2 + (Aω

2 )
2.

The products (Aω
1 )

2, Aω
1A

ω
2 = Aω

2A
ω
1 and (Aω

2 )
2 may all be read from the intersection matrices

above. We have:

(Aω
1 )

2 = kI +AAω
1 +BAω

2 ,

Aω
1A

ω
2 =

l

k
BAω

1 +DAω
2 ,

(Aω
2 )

2 = lI +
l

k
DAω

1 + FAω
2 .

Now, setting X := α+
1

α
, Y :=

α

β
+

β

α
, and Z := β +

1

β
,

nI = (1 + k + l)I +

(

X +A+
l

k
BY +

l

k
D

)

Aω
1 + (Z +B +DY + F )Aω

2 ,

which implies

X +A+
l

k
BY +

l

k
D = 0 and (1)

Z +B +DY + F = 0. (2)

We see that

(2Y −XZ)2 = (X2 − 4)(Z2 − 4) (3)

and substituting into (3) for X and Z using (1) and (2) gives the required cubic in Y .

Remarks.

1. Exactly one of the equations: 2Y = XZ ±
√

(X2 − 4)(Z2 − 4) holds, and this determines
which roots should be taken for α and β. Hence, the maximum number of distinct pairs
(α, β) is 6. We shall see examples shortly that realize this maximum, and also cases in which
only 2 distinct solutions are found.

2. If α, β ∈ {±1}, then W is a Hadamard matrix and the remarks in Section 3.1 apply.
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5 L2(n)

The lattice graphs are rectangular grids with the lattice points as vertices. Two are adjacent
if and only if they have exactly one coordinate in common. The SRG parameters, for n ≥ 2,
are L2(n) =

(

n2, 2(n− 1), n− 2, 2
)

. Note that when n = 2, the graph is strongly regular but
imprimitive: the complement is not connected.

In this section we find all type-II matrices lying in the weighted Bose-Mesner algebra of a
lattice graph. In this instance, we know precisely what the regular weights are—they are tensors
of regular 2-graphs.

Theorem 5.1. ([15]) If ω is a non-trivial regular weight with full support on the lattice graph
L2(n) then n is even and ω = ω1⊗ω2, where δω1 and δω2 are regular 2-graphs with the same
parameters.

Under a suitable ordering of the vertices, the adjacency matrices for the lattice graph have
the form

A1 = I ⊗ (J − I) + (J − I)⊗ I,

A2 = (J − I)⊗ (J − I).

For the remainder of this section, we let ω be a regular weight on L2(n) which according to the
theorem must have the form

ω = (I + C1)⊗ (I + C2)

= I ⊗ I + I ⊗ C2 + C1 ⊗ I + C1 ⊗ C2,

where Ci (i = 1, 2) is a matrix of a regular 2-graph δωi with parameters (n, a).

5.1 Kronecker products

Since Kronecker products of type-II matrices are type II, we will always have type-II matrices
in Aω that are products of type-II matrices related to the constituent 2-graphs. Explicitly, we
observe that

W := (I + αC1)⊗ (I + αC2)

(with α2 +Aα+ 1 = 0 as in Section 3.1) is type II. Expanding,

W = I ⊗ I + α(I ⊗ C2 + C1 ⊗ I) + α2(C1 ⊗ C2)

= In2 + αAω
1 + α2Aω

2 .

We conclude that W ∈ Aω.

Note that there are two possibilities for α, giving two type-II matrices of this form, but
(I + α1C1)⊗ (I + α2C2) does not lie in Aω when α1 6= α2.

We are now interested in finding all type-II matrices in Aω, referring back to Theorem 4.1.
(This discussion ends with Theorem 5.3, should the reader wish to get it over with.) From [15],
the intersection matrices for Aω have the form:

Mω
1 =





1
2(n− 1) A 2

n− 1 2A



 , Mω
2 =





1
n− 1 2A

(n− 1)2 (n− 1)A A2



 .
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Here, as in Section 3, the parameter A is related to the 2-graph parameters by A = n− 2a− 2.
Replacing k, l, B,D, F with their counterparts from these, Theorem 4.1 gives

α =
1

2

(

X ±
√

X2 − 4
)

, β =
1

2

(

Z ±
√

Z2 − 4
)

,

with
X = −(n− 1)Y − nA, Z = −2AY −A2 − 2 (4)

and Y a root of

(Y +A)
[

2A(n− 1)Y 2 + (A2(n− 3)− (n− 2)2)Y −A(n2 +A2 + 4)
]

= 0, (5)

taking matching signs in the expressions for α and β when 2Y − XZ = −
√

(X2 − 4)(Z2 − 4)

and opposite signs when 2Y −XZ =
√

(X2 − 4)(Z2 − 4).
Clearly Y = −A is a solution. This gives X = −A,Z = A2 − 4 and is precisely the case in

which W is a tensor product. This is formalized in the following lemma.

Lemma 5.2. Let Γ be the lattice graph SRG(n2, 2(n−1), n−2, 2) and suppose W = I+αAω
1+βAω

2

is a type-II matrix in Aω. The following are equivalent:

1. W = (I + γC1)⊗ (I + γC2) for some γ ∈ C;
2. α = γ, β = γ2 where γ2 +Aγ + 1 = 0;
3. α

β + β
α = −A.

Proof. 1⇒2: Expanding (I + γC1)⊗ (I + γC2) to In2 + γ(I ⊗C2 +C1 ⊗ I) + γ2C1 ⊗C2 gives
α = γ and β = γ2. Since W (−) = (I + 1

γC1)⊗ (I + 1
γC2),

WW (−)T = (I + γC1)⊗ (I + γC2) · (I + 1/γC1)⊗ (I + 1/γC2)

= (I + γC1) (I + 1/γC1) ⊗ (I + γC2) (I + 1/γC2)

=
[

I + (γ + 1/γ)C1 + C2
1

]

⊗
[

I + (γ + 1/γ)C2 + C2
2

]

.

Substituting C2
i = (n− 1)I +ACi,

WW (−)T = [nI + (γ + 1/γ +A)C1] ⊗ [nI + (γ + 1/γ +A)C2]

= n2In2 + n (γ + 1/γ +A) (I ⊗ C2 + C1 ⊗ I) + (γ + 1/γ +A)
2
C1 ⊗ C2

= n2In2 + n (γ + 1/γ +A)Aω
1 + (γ + 1/γ +A)2 Aω

2 .

Since W is type II, this must equal n2In2 , thus γ + 1/γ = −A, and γ2 +Aγ + 1 = 0 follow from
linear independence of Aω

1 and Aω
2 .

2⇒1: Immediate.
2⇒3: Given γ2 + Aγ + 1 = 0, the roots of x2 +Ax + 1 are γ and 1/γ. Assuming that α = γ

and β = γ2, we have
α

β
+

β

α
=

1

γ
+ γ = −A.

3⇒2: Suppose 3 holds, and solve for β:

β =
1

2

(

−Aα±
√

A2α2 − 4α2
)

= α

(

−A±
√
A2 − 4

2

)

,
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thus β = αγ where γ2 + Aγ + 1 = 0. It remains to show that α = γ. Returning to (4) with
Y = −A, we have X = −A. So α + 1/α = −A and α is a root of x2 + Ax + 1. Now α = γ or
α = 1/γ. In the latter case, β = αγ = 1, so Z = β + 1/β = 2. But from (4), Z = A2 − 2 forcing
A = ±2. This implies γ = ±1 and thus γ = 1/γ.

It is natural to ask when A and/or Aω are contained in NW . The following observation
addresses this question for the lattice graph, when W is a tensor of type-II’s. From Proposition
7 of [10], we have:

W = W1 ⊗W2 =⇒ NW = NW1
⊗NW2

.

We claim: If W = U ⊗ V with U and V n× n type-II matrices and A the Bose-Mesner algebra
for a lattice graph L2(n), then A ⊆ NW .

Proof. Since NW = NU ⊗ NV and every Nomura algebra contains I and J , we have I ⊗ I,
A1 := I ⊗ (J − I) + (J − I) ⊗ I, and A2 := (J − I) ⊗ (J − I) all contained in NW . Under a
suitable ordering of vertices, these three matrices form the standard basis for A.

5.2 Type-II matrices

To summarize, we have seen thus far thatAω for the lattice graph always contains type-II matrices
which are tensors of type-II’s related to the constituent 2-graphs of ω. The Nomura algebras
are tensors of the corresponding Nomura algebras, and are spin models under the conditions of
Theorem 2.2. We now show that Aω contains type-II matrices which are not tensors, as suggested
by Lemma 5.2.

Theorem 5.3. The weighted Bose-Mesner algebra of a regular weight of rank 3 on L2(n) (n > 2)
contains precisely 2 type-II matrices when A = 0, 3 when A = ±2, and 6 otherwise. At most 2
of these are tensors.

Proof. Consider the quadratic factor in (5), and label it Q. The discriminant of Q is

(

A2(n− 3)− (n− 2)2
)2

+ 8A2(n− 1)(n2 +A2 + 4)

which may be rewritten:

A4(n+ 1)2 +A2(6(n3 + n2)− 8) + (n− 2)4

and is therefore positive for n ≥ 2. Equation (5) thus has 3 distinct, real solutions unless −A is a
root of Q. Evaluating Q at Y = −A gives An(A2−4). Hence the exceptional cases are A = 0,±2.

Suppose now that A 6= 0,±2. Since X and Z are both linear in Y , we have three distinct, real
values for X and for Z respectively. As α satisfies α2 −Xα+ 1 = 0, distinct values of X yield
distinct values of α, and each X gives two solutions for α unless X = ±2. We conclude there are
6 distinct pairs (α, β) except when X and Z are both ±2.

Suppose further that X = ±2, Z = ±2. In each of the four cases, we use (4) to equate two
expressions for Y . The case X = Z = 2 gives

nA+ 2

−(n− 1)
=

A2 + 4

−2A
=⇒ A = −2 or A =

2(n− 1)

n+ 1
.

However, A 6= −2 by assumption, and clearly

0 <
2(n− 1)

n+ 1
< 2.
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Recalling that A is an integer, we have A = 1. But then 2(n − 1) = n + 1 which gives n = 3,
contradicting the fact that n is even by Theorem 5.1.

The case X = 2, Z = −2 gives

nA+ 2

−(n− 1)
=

A2

−2A
=⇒ A = − 4

n+ 1
.

This requires n = 1 or n = 3, neither of which is possible.
The remaining two cases are similar, and lead to no solutions.

We next analyse the exceptional cases to Theorem 5.3.
Case A = 0. (5) becomes −(n− 2)2Y 2 = 0, which implies (X,Y, Z) = (0, 0,−2). We conclude
that α = ±i, β = −1, and we have exactly two type-II matrices.

Case A = 2. Q becomes

4(n− 1)Y 2 − (n− 4)2Y − 2(n2 + 8),

so (5) has solutions Y = −2 (twice) and Y =
n2 + 8

4(n− 1)
. If Y = −2, (X,Y, Z) = (−2,−2, 2),

yielding (α, β) = (−1, 1). The third root gives

X = −n2 + 8n+ 8

4
, Z = −n2 + 6n+ 2

n− 1
,

and we have two pairs (α, β), taking like signs for the radicals since 2Y −XZ > 0.

Case A = −2. This case is identical to A = 2 except for signs.

The table below summarizes these exceptional cases.

Table 1. Exceptional cases for L2(n).

X Y Z (α, β) W a tensor?

A = 0 0 0 −2 (±i,−1) Y

A = 2 −2 −2 2 (−1, 1) Y

−n2+8n+8
4

n2+8
4(n−1) −n2+6n+2

n−1 2 solutions N

A = −2 2 2 2 (1, 1) Y

n2+8n+8
4 − n2+8

4(n−1) −n2+6n+2
n−1 2 solutions N

Remarks.

1. The case A = 0 gives the conference 2-graphs. Here, N is a product of Span(I, J) by Theorem
3.1 because the only type-II matrices are tensors of the form I + iC1 ⊗ I + iC2, and the
constituent type-II’s are clearly not Hadamard matrices.

2. The 2-graphs with A = −2 and A = 2 are complements. Recall that the matrix Ci representing
the 2-graph is taken as the (0,±1) adjacency matrix of a graph. Accordingly, replacing the 2-
graph with its complement amounts to swapping −Ci and Ci. Forming ω = (I−C1)⊗(I−C2)
we see that the entries of Aω

1 are negated while Aω
2 remains the same. Hence the type-II

matrices associated with these complementary pairs of 2-graphs have −α and β as coefficients.
The case A = −2, and the final two rows of the table, are therefore redundant.
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3. The type-II’s that are not tensors could be generalized Kronecker products as defined in [9].
The examples given in Tables 2–4 of the next section, by Lemma 4.3 of [9], are not generalized
Kronecker products.

6 Examples

6.1 L2(n)

As noted in Section 5, the Nomura algebra for a non-tensored type-II matrix may be non-trivial,
even when the constituent 2-graphs produce only Potts models.

6.1.1 Lattice graphs from regular 2-graphs with A = 0 and n ≤ 50

Nontrivial regular 2-graphs with n ≤ 50 and A = 0 occur for n = 10, 26 and 50 ([3]). These all
have trivial Nomura algebras by Remark 1 of Section 5.2.

6.1.2 Lattice graphs from regular 2-graphs with A 6= 0 and n ≤ 50

Nontrivial regular 2-graphs with A 6= 0 and n ≤ 50 occur for n = 16, 28, 36 ([3], [19]). In the first
two cases, there is a unique regular 2-graph. For n = 36, 227 non-isomorphic regular 2-graphs
are known.

The tables below show the 2-graph parameters and the coefficients α and β for type-II matrices
associated with L2(n).

Table 2. Parameters for the regular 2-graph with n = 16.

n A α β

16 2 −1 1

16 2 −49± 20
√
6 − 59

5
± 24

5

√
6

Like signs are taken for α and β in row 2, giving a total of 3 type-II’s for (n,A) = (16, 2). In the
first row, W is a Hadamard matrix and N has dimension 16 but is the product of 4 copies of the
trivial Nomura algebra ([10], [5]). (The example from Section 3.1 is an instance of this.) In the
second row, N is found to be trivial.

Table 3. Parameters for the regular 2-graph with n = 28.

n A α β

28 6 −3± 2
√
2 17∓ 12

√
2

28 6 − 238

3
± 5

3

√
1009 ± 2

3

√

20465 ± 595
√
1009 − 457

27
± 20

27

√
1009 ± 2

27

√

152930 ± 4570
√
1009

For row 1, we know by Theorem 3.1 that the Nomura algebras for the constituent 2-graphs are
trivial. For the lattice graph, N is thus the product of Span(I, J). Row 2 represents the type-II’s
that are not tensors. Only 4 of the 64 possible ± combinations actually occur. If the reader will
kindly allow a slightly cryptic presentation, these shall be expressed as the following ordered
pairs where each integer should be interpreted as a binary numeral: (3, 3), (1, 1), (6, 4), (4, 6).
For example, (6, 4) is (110, 100) which indicates + + − for α and + − − for β. We have a total
of 6 type-II’s for (n,A) = (28, 6). Nomura algebras for row 2 have not been determined.



16

Table 4. Parameters for the regular 2-graphs with n = 36.

n A α β

36 2 −1 1

36 2 −199 ± 60
√
11 − 757

35
±

√
11

Row 1 represents a Hadamard matrix and since n ≡ 4 (mod 8) we know by Theorem 3.1 that
N is a product of Span(I, J). Row 2 shows a pair of type-II’s that are not tensors. The best
hope for a non-trivial Nomura algebra comes from pairing two non-isomorphic 2-graphs to form
ω. Therefore there are

(

227
2

)

cases to look at, of which only a few have been computed, revealing
nothing of interest.

6.2 S4(q)

A family of regular weights with values ±1,±i, constructed using the projective symplectic group
S4(q), is described in [15].

Let Γ be SRG(q3 + q2 + q + 1, q(q + 1), q − 1, q + 1) from the rank 3 action of S4(q) on the
totally isotropic lines of the symplectic geometry. For q an odd prime power, there is a regular
weight of rank 3 on Γ with intersection matrices given by

Mω
1 =





0 1 0
q(q + 1) 0 ±(q + 1)

0 ±q2 0



 , Mω
2 =





0 0 1
0 ±q2 0
q3 0 ±q(q − 1)



 ,

(‘+’ if q ≡ 1 (mod 4) and ‘−’ if q ≡ 3 (mod 4)).
The type-II matrices in Aω are I + αAω

1 + βAω
2 where

α2 =
−β(βq2 + 1)

β + q2
, β =

−q2 − 1±
√

(q2 + 1)2 − 4

2
when q ≡ 1 (mod 4)

and

α2 =
β(βq2 − 1)

β − q2
, β =

q2 + 1±
√

(q2 + 1)2 − 4

2
when q ≡ 3 (mod 4).

These have been explicitly constructed for q = 3, 5 and in both cases the Nomura algebra is
Span(I, J).

6.3 T (5)

Let Γ be SRG (10, 3, 0, 1) which is the well-known Petersen graph. A regular weight of rank 3
on Γ is determined by the action of the alternating group A5 on the pairs from {1, 2, . . . , n} as
described in [15]. This example appears also in [8] and [18]. Borrowing Seidel’s construction, we
set

A :=













0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 1 0












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and B := J − I −A. The adjacency matrices for the Petersen graph and T (5) are given by

A1 :=

(

A I
I B

)

and A2 := J − I −A1

respectively. The weighted adjacency matrices are

Aω
1 =

(

A I
I −B

)

and Aω
2 =

(

B A−B
A−B A

)

with the type-II matrices in Aω given by

α2 = (3− 4i)/5, β = i and α2 = (3 + 4i)/5, β = −i,

both of which yield trivial Nomura algebras.
This example is the smallest in a family of SRG’s known as the triangular graphs. The vertices

are the unordered pairs from an n-set. Two of these pairs are adjacent if and only if they have
exactly one element in common. The SRG parameters are T (n) =

((

n
2

)

, 2(n− 2), n− 2, 4
)

for
n ≥ 4. The complement of the Petersen graph is T (5).

Other examples of regular weights in the triangular graph family exist. In [16] these are
viewed in the context of the Johnson scheme, so ranks higher than 3 are considered. These cases
have not yet been explored for type-II matrices.

6.4 A2n

The alternating group A2n acts transitively on the pairs of disjoint n-sets, or bisections. This
action has rank n

2 + 1 when n is even, and rank n+1
2 when n is odd, giving association schemes

of the same ranks. The case n = 5 is of interest here, as this is when the association scheme
has rank 3. The group action affords the SRG Γ = (126, 25, 8, 4). A regular weight on Γ can be
constructed with intersection matrices below.

Mω
1 =





1
25 8 4

16 3



 Mω
2 =





1
16 3

100 12 6





There are 6 type-II matrices, as in Theorem 4.1, two of them real-valued.
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