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Abstract. This work addresses existence of weighted coherent configurations

(cc’s) in the special case of the Johnson schemes, J(n, k). Many examples of

weighted cc’s occur in the context of a permutation representation of a group
which affords the cc. We determine the ranks of the weighted Johnson schemes

which arise in this “group case” in connection with the alternating group An. The
association scheme J(n, 2) has rank 3, with the triangular graph T (n) as one of its

graphs. Conditions on feasible parameters for regular, full rank weights on T (n)

are established. We describe two infinite families of such feasible parameters.

0. Introduction

A “prototype for weighted coherent configurations” is the weighted triangular
graph T (5), realized in R3 by a regular icosahedron (J. J. Seidel, [9]). This exam-
ple is of interest algebraically as it is associated with a monomial representation
of the alternating group A5 lying over a rank 3 permutation representation. It is
discussed in this context by D. G. Higman in [5], where weighted coherent con-
figurations (weighted cc’s) are defined and the connection between a weighted cc
and monomial representations of a group affording the cc is established. Many
examples are presented there. Definitions relevant to the present paper are re-
peated below.

The T (5) example can be described purely in terms of the geometry of the
regular icosahedron ([6], [7]). There is a one-to-one correspondence between
switching classes of weights and line systems of a certain type ([5]). In the T (5)
example, this yields a system of 10 lines in 3-space with two intersection angles
which achieves both the special bound and the absolute bound (established by
Delsarte, Goethals and Seidel in [3]) for the number of such lines ([8],[9]).

In [6], regular weights of full rank on strongly regular graphs, which are homo-
geneous, rank 3 cc’s, are investigated. Definitions here are consistent with, but
slightly more general than, those in [6]. In the present paper, we aim to general-
ize the T (5) example in two ways. The monomial representation approach gives
rise to many rank 2 regular weights on triangular graphs but no further rank 3
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examples. This is proven as a special case of a theorem giving the rank of the
regular weight on the Johnson scheme J(n, k) associated with the action of An on
k-sets. The only cases in which the weight has full rank are (n, k) = (5, 2) (which
is the T (5) example) and (n, k) = (6, 3). Full rank regular weights on T (n) not
arising in this way are of course possible. Conditions on the parameters which
can occur are given in section 2 and two infinite families of feasible parameters
are found. No examples are known which realize these parameters for n > 5.

In section 1 we give preliminaries on association schemes, regular weights and
2-graphs. In section 2, feasible regular rank 3 weight parameters for T (n) are
given. The method outlined in [5] for constructing regular weights in the group
case is described in section 3 for the specific case of weights with values which
are fourth roots of unity and cc’s which are association schemes. This method is
applied in section 4 to the Johnson scheme, and a full-rank example on J(6, 3) is
detailed in section 5.

1. Preliminaries

1.1. Association schemes. For a relation f on a finite set X , and x ∈ X , we
write f(x) for the set {y ∈ X | (x, y) ∈ f}.

Definition. An association scheme X = (X, f, I) is a finite set X with a set
of nonempty, symmetric relations (fi)i∈I such that

(1) {fi}i∈I forms a partition of X × X ,
(2) f0 = diag(X × X),
(3) For (x, z) ∈ fk, i, j, k ∈ I, pk

ij(x, z) := | fi(x) ∩ fj(z) | is independent of
the choice of (x, z) in fk.

We write Ai, i ∈ I for the adjacency matrix of the relation fi, and set vi = p0
ii,

the valency of the ith relation. The adjacency algebra is the linear span over
C of Ai, i ∈ I. The intersection numbers for the adjacency algebra are the
structure constants pk

ij defined by

Ai · Aj =
∑

k∈I

pk
ijAk.

The intersection matrices are

Mj :=
(

pk
ij

)

i,k∈I
(j ∈ I)

and the map Aj 7→ Mj is an isomorphism of associative algebras.

Definition. A strongly regular graph (srg) is an association scheme with 3
relations.

The parameters of an srg are (n, p0
11, p

1
11, p

2
11), where n = |X |.
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1.2. Regular weights. ([5])

Definition. Let M be a commutative, multiplicative monoid. A weight with

values in M is a 2–cochain ω ∈ C2(X, M).

Usually, we will take M = Ut ∪{0}, where Ut is the set of complex tth roots of
unity. In particular, we take t = 2 in the present paper except in the discussion
of the Johnson scheme J (6, 3) where t = 4.

Since M may contain 0 we define σ: M → M by

σ(a) =

{

a−1 a ∈ Ut

0 a = 0.

Observe that if t = 2, σ is the identity map on M . If ω is a weight,

δω(x, y, z) = ω(y, z)σ(ω(x, z))ω(x, y)

defines a 3-cochain which assigns a weight to each triple or triangle (x, y, z).
Viewing ω as a matrix, the switching class of ω is the set of matrices obtained

from ω by similarity transformation by the matrix diag(u(x1), u(x2), . . . , u(xn))
where u is a function from X to Ut.

Let X = (X, f, I) be an association scheme, ω ∈ C2(X, M), i, j ∈ I, x, z ∈ X ,
and α ∈ M . Define

βδω
ij (x, z, α) :=

∣

∣ {y ∈ fi(x) ∩ fj(z) | δω(x, y, z) = α}
∣

∣.

We say δω is regular on X if for fixed (x, z) ∈ fk, βδω
ij (x, z, α) is independent

of the choice of (x, z) ∈ fk. In this case we write βk
ij(α) = βδω

ij (x, z, α).

We say ω ∈ C2(X, M) is defined on the association scheme X = (X, f, I) if
fi ∩ supp(ω) 6= ∅ =⇒ fi ⊂ supp(ω). Define Iω ⊆ I by supp(ω) = ∪i∈Iω

fi. Then
the rank of ω on X is rankX (ω) = |Iω|.

Definition. A weight ω is regular on the association scheme X if

(1) ω is defined on X ,
(2) δω is regular on X , and
(3) ω(x, z) = 0 =⇒

∑

ω(x, y)ω(y, z) = 0,
where the sum is over y ∈ fi(x) ∩ fj(z), (i, j ∈ I).

The weighted adjacency matrices are Aω
i := ω ◦Ai (i ∈ I) (the Hadamard

matrix product). The set {Aω
i |i ∈ I} spans a self-adjoint subalgebra of the

n×n matrices over C, called the weighted adjacency algebra, Aω. The structure
constants for Aω are given by

Aω
i · Aω

j =
∑

i∈Iω

βk
ijA

ω
k
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where βk
ij :=

∑

α∈M

αβk
ij(α). As with ordinary association schemes, the regular

representation gives an isomorphism of associative algebras, with

Aω
j 7→ Mω

j :=
(

βk
ij

)

i,k∈Iω
(j ∈ Iω).

If the weighted adjacency matrices commute, they can be simultaneously di-
agonalized. The eigenvalues are the same as those of the corresponding weighted
intersection matrices, and the multiplicities are calculated using the traces of the
matrices Aω

i , (Aω
i )2. Testing these multiplicities for integrality rules out some

sets of potential weight parameters. We will call {βk
ij}i,j,k∈Iω

a set of feasible

weight parameters for the association scheme if it cannot be ruled out in this
way.

Properties. The properties listed below follow easily from the definitions, and
are repeated from [5].

(1) β0
ij(α) =

{

vi if i = j and α = 1,

0 otherwise.

(2) βk
0j(α) =

{

1 if j = k and α = 1,

0 otherwise.
(3) βk

ij(α) = βk
ji(σ(α))

(4) βk
ij(α)vk = βi

kj(σ(α))vi = βj
ik(σ(α))vj

A weight ω is regular on a strongly regular graph Γ if ω is regular on the
association scheme whose non-trivial relations are given by Γ and Γ. We observe
that a regular weight with values ±1 on the association scheme with 2 relations
is equivalent to a regular 2–graph, defined below.

1.3. Regular 2-graphs. In the next section, we use the fact that a regular
2-graph requires an even number of vertices ([12]) to rule out some parameter
sets.

Definition. A 2–graph is a set of vertices X and a set of distinguished triples
∆ ⊆ X(3) with the property that every 4–subset of X contains an even number
of triples in ∆.

Triples in ∆ are called coherent triples.
A 2–graph may be viewed as a 3–coboundary with values ±1. There is a

switching class of graphs representing 2–cochains of which it is the boundary, so
that a 2–graph is equivalent to a switching class of graphs. The adjacency matrix
of a graph in this switching class is a matrix representative of the 2–graph ([10]).

Definition. A 2–graph Φ is regular if and only if every pair of vertices is
contained in the same number of coherent triples.

The parameters of a regular 2–graph are (n, a, b), where n = 3a − 2b is the
number of vertices, and a is the number of coherent triples containing a given
pair. It is shown in [12] that both n and a are even.
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We say a regular weight ω fuses to a regular 2–graph if the sum Aω
1 + Aω

2 is a
matrix of a regular 2–graph.

2. Feasible weight parameters for T (n)

2.1. The triangular graph T(n). Let T (n) (n ≥ 5) be the srg with unordered
pairs from the set {1, 2, . . . , n} as vertices and two such pairs defined to be
adjacent if and only if their intersection has cardinality 1.
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In the figure above, each arc represents a clique of size n−1. The srg parameters
are

((

n

2

)

, 2(n − 2), n − 2, 4

)

.

The notation T (n) will sometimes be used to refer to this parameter set rather
than the graph itself. Intersection matrices for T (n) are given below.

M1 =





1
2(n − 2) n − 2 4

n − 3 2(n − 4)



 , M2 =





1
n − 3 2(n − 4)

(

n−2
2

) (

n−3
2

) (

n−4
2

)



 .

2.2. Parameter restrictions. There is a (unique up to switching) regular
rank 3 weight on the complement of T (5), the so-called Petersen graph. This
example is discussed in [5], [7] and [6]. For n > 5, there are two infinite families
of feasible parameters, but no examples known to exist. The theorem below gives
restrictions on the feasible parameter sets for T (n).

Theorem. If ω is a non-trivial regular weight with M = {±1} and full support
on the triangular graph T (n), then n is odd, and the weight parameters satisfy
the following:

(i) β2
11 = 0

(ii) β1
11

2
+ 8(n − 2) is a square and β2

21 = 1
2

(

β1
11 ±

√

β1
11

2
+ 8(n − 2)

)
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(iii) Either β2
22 = 0, in which case n ≡ 1 (mod 4), or

β2
22

2
+ (n − 3)(β2

21
2

+ 2(n − 2)) is a square
(iv) m1, m2, and m3 are positive integers, where

m1 =
n(n − 1)(n − 2)(n − 3)

2K(K + β2
22)

m2 =
n(n − 1)(n − 2)(n − 3)

2K(K − β2
22)

,

m3 =
n(n − 1)β2

21
2

2(β2
21

2
+ 2(n − 2))

and K =

√

β2
22

2
+ (n − 3)(β2

21
2

+ 2(n − 2)).

Proof of (i). Let Γ = T (n) and suppose ω is as in the statement of the theorem.
Let βk

ij(α) and βk
ij be the usual weight parameters, so by the properties in section

2,
β1

11= 2β1
11(1) − (n − 2) β2

21= 2β2
21(1) − 2(n − 4)

β2
11= 2β2

11(1) − 4 β1
22= β2

21(n − 3)/4

β1
21= β2

11(n − 3)/4 β2
22= 2β2

22 −
(

n−4
2

)

and βk
ij(α) is nonnegative and bounded by pk

ij . Replacing Aω
i by −Aω

i if necessary,

we may assume β2
11(1) ∈ {0, 1, 2}. We may also assume that ω(12, xy) = +1 for

all pairs {x, y}. We abuse notation here, writing xy for {x, y}.
We show β2

11(1) 6= 0, β2
11(1) 6= 1.

Suppose β2
11(1) = 0, so β2

11 = −4 and β1
21 = 3 − n. Then all triples (x, ∗, y) of

types (1, 1, 2) and (2, 1, 1)

.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
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............................................................................................. . . . . . . .

x

∗

y
.

.

.

.

.

.

.

.......................................................................................................................................................................................

x

∗

y

have weight −1.
Consider triples (13, ∗, 23) of type (1, 1, 1). These are (13, 12, 23) and, for all

x > 3, (13, x3, 23). From

.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
............................................................................................. . . . . . . .

12

13

x3

1

1
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(12, 13, x3) of type (1, 1, 2) we have

ω(13, x3) = −1.

Likewise, the triple (12, 23, x3) forces

ω(23, x3) = −1.

Setting α = ω(13, 23), we find all triples (13, ∗, 23) of type (1, 1, 1) have weight
α. It follows that

β1
11(α) = n − 2.

Replacing 3 by 4 in the above argument and taking x = 3 or x > 4, we have

ω(14, x4) = ω(24, x4) = −1.

Also,
ω(14, 24) = α

since the triple (14, 12, 24) has weight α. Next we apply this to triples (12, ∗, 34)
of type (2, 1, 2). These are (12, 3x, 34) and (12, 4x, 34) for all x > 4. We claim

ω(34, 3x) = ω(34, 4x) = α.

.

.

.

.

.

.

.

............................................................................................. . . . . . . .

12

3x

34

1

1
.

.

.

.

.

.

.

............................................................................................. . . . . . . .

12

4x

34

1

1

Indeed, this follows from the fact that triples (13, 3x, 34) and (14, 4x, 34) (x > 4)
have type (1, 1, 1) and therefore weight α. Now, triples (12, 3x, 34) and (12, 4x, 34)
have weight α. Thus,

β2
21(α) = 2(n − 4).

Finally, we consider triples (12, xy, 34) with (x, y > 4) having type (2, 2, 2).
We will show ω(34, xy) = −1 to conclude that all such triples have weight −1.
Triples (34, ∗, xy) of type (1, 1, 2) have weight −1.

.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
............................................................................................. . . . . . . .

34

3z

xy

α

.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
............................................................................................. . . . . . . .

34

4z

xy

α
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These are (34, 3z, xy) and (34, 4z, xy) with z = x or z = y. It is enough to show
ω(xy, ∗) = α, since ω(34, ∗) = α from above. Triples (12, 2z, xy) and (12, 2z, 3z)
(z = x, y) of type (1, 1, 2) have weight −1.

.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
............................................................................................. . . . . . . .

12

2z

xy

1

1
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
............................................................................................. . . . . . . .

12

2z

3z

1

1

Hence,
ω(2z, xy) = ω(2z, 3z) = −1.

Now (2z, xy, 3z) has type (1, 1, 1),

.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.......................................................................................................................................................................................

2z

xy

3z

−1

−1

thus ω(xy, 3z) = α. Similarly, ω(xy, 4z) = α and we conclude

β2
22(−1) =

(

n − 4

2

)

.

We have
ω = I + αA1 − A2,

thus β2
11(1) = 0 implies ω is trivial.

Suppose β2
11(1) = 1. Then

β2
11 = −2, β1

21 =
−(n − 2)

2
.

There are four triples (12, ∗, 34) of type (1, 1, 2), exactly one of which has weight
1. We may suppose that (12, 23, 34) has weight 1, so ω(23, 34) = 1. It follows
that

ω(24, 34) = ω(13, 34) = ω(14, 34) = −1.
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Consider triples (14, ∗, 23) of type (1, 1, 2). Setting α = ω(14, 23), we find
(14, 12, 23) and (14, 34, 23) have weight α and −α respectively. Clearly, one of
these is +1, hence the remaining two triples (14, ∗, 23) of type (1, 1, 2) have weight
−1.

.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
............................................................................................. . . . . . . .

14

12

23

1 1

α
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
............................................................................................. . . . . . . .

14

34

23

−1 1

α
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
............................................................................................. . . . . . . .

14

13

23α
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
............................................................................................. . . . . . . .

14

24

23α

This implies
ω(13, 14) = −αω(13, 23)

and
ω(14, 24) = −αω(23, 24).

Finally, consider triples (13, ∗, 24) of type (1, 1, 2). Let β = ω(13, 24). Triples
(13, 12, 24) and (13, 34, 24) both have weight β, which implies β = −1 and that
(13, 14, 24), (13, 23, 24) have different weights. But

δω(13, 14, 24) = ω(13, 14)ω(13, 24)ω(14, 24)

= −αω(13, 23)ω(13, 24)(−α)ω(23, 24)

= δω(13, 23, 24),

a contradiction. Therefore, β2
11(1) 6= 1. �

Proofs of (ii)–(iv). To prove (ii)—(iv) we analyse the eigenvalues and their mul-

tiplicities for Aω
1 and Aω

2 . Set S =

√

β1
11

2
+ 8(n − 2). Then Aω

1 has eigenvalues

β2
21,

β1
11 + S

2
,

β1
11 − S

2

and Aω
2 has eigenvalues

0,
β2

22 + K

2
,

β2
22 − K

2
.

We need to determine the pairs of eigenvalues which share the same multiplicities.
From the weighted intersection matrices, we have the equations

Aω
1 Aω

2 = β2
21A

ω
2(1)

(Aω
2 )2 =

(

n − 2

2

)

I + β1
22A

ω
1 + β2

22A
ω
2 .(2)
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Equation (1) implies that all non-zero eigenvalues of Aω
2 correspond to β2

21. From
(2), we have

β2
21(n − 3)

4

(β1
11 ± S)

2
= −

(n − 2)(n − 3)

2

=⇒ β2
21(β

1
11 ± S) = −4(n − 2)

=⇒ β2
21(β

1
11 ± S) =

(β1
11

2
− S2)

2
.

So β2
21 = (β1

11 ± S)/2, the sign depending on which one is even. This proves (ii).
Let m1, m2, m3 be the multiplicities of (β2

22 + K)/2, (β2
22 − K)/2, and 0 respec-

tively. Using the trace of Aω
i and the trace of (Aω

i )2, we have the five equations:

m1 + m2 + m3 =
n(n − 1)

2

m1β
2
21 + m2β

2
21 + m3(β

1
11 − β2

21) = 0

m1β
2
21

2
+ m2β

2
21

2
+ m3(β

1
11 − β2

21)
2 = n(n − 1)(n − 2)

m1

(β2
22 + K

2

)

+ m2

(β2
22 − K

2

)

= 0

m1

(β2
22 + K

2

)2

+ m2

(β2
22 − K

2

)2

=
n(n − 1)(n − 2)(n − 3)

4
.

Observe that if K is not rational, then m1 = m2, and it follows that β2
22 = 0.

But

β2
22 = 2β2

22(1) −
(n − 4)(n − 5)

2
=⇒ n ≡ 1 (mod 4),

proving (iii).
Solving the equations above, we find

m1 =
n(n − 1)(n − 2)(n − 3)

2K(K + β2
22)

m2 =
n(n − 1)(n − 2)(n − 3)

2K(K − β2
22)

m3 =
n(n − 1)β2

21
2

2(β2
21

2
+ 2(n − 2))

which proves (iv). �

2.3. Feasible parameter families. For any odd n, we find β1
11 = n − 4 and

β2
21 = −2 satisfy (ii), but there is not always a corresponding value of β2

22 which
satisfies (iii) and (iv). However, there are two families of parameters which occur
for certain n.
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β1
11 β2

21 β2
22 m1 m2 m3

n ≡ 1 (mod 4) n − 4 −2 0 (n−1)(n−2)
4

(n−1)(n−2)
4

n − 1

n ≡ 3, 5 (mod 6) n − 4 −2 ±n+3
2

n(n−2)
3

(n−2)(n−3)
6 n − 1

In the second case above, there is fusion to a regular 2–graph, which means that
the parameters are ruled out when

(

n
2

)

is odd. This occurs ⇐⇒ n ≡ 3 (mod 12)
or n ≡ 11 (mod 12).

For n = 5, the only feasible parameters are those from the first family above,
and these match the known T (5) example.

n β1
11 β2

21 β2
22 m1 m2 m3

5 1 −2 0 3 3 4

For n = 7, K must be rational, but there are no possible values for β2
22, thus

there are no feasible parameters.
For n = 9, there are exactly 2 sets of feasible parameters, one from each of the

two families above.

n β1
11 β2

21 β2
22 m1 m2 m3

9 5 −2 0 14 14 8

9 5 −2 ±6 7 21 8

In the second case, we have fusion to a regular 2–graph on 36 points, and there
are many which share these parameters (see [1]).

For n = 11, there is one set of feasible parameters. This is from the second
family above, and is ruled out by fusion.

There are feasible parameter sets not belonging to either of these two families.
The smallest occurrence is given below.

n β1
11 β2

21 β2
22 m1 m2 m3

27 5 10 25 36 81 234

3. The group case

Let G be a finite group acting transitively on a set X with symmetric orbitals.
Then the orbitals are the basic relations for an association scheme ([4] and others).
It is well known that the centralizer algebra of the matrices in the permutation
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representation of G is the adjacency algebra of the association scheme. D. G.
Higman ([5]) gave a generalization to transitive monomial representations. The
centralizer algebra in this case is a weighted adjacency algebra and the weight is
regular on the cc afforded by the underlying action of the group. We introduce
notation and conventions below for the special case of monomial representations
with associated weights having values in U4 on the association scheme. The
reader is directed to [5] for the full generality of the subject.

We fix x ∈ X and suppose the stabilizer, H := Gx, has an index 2 subgroup
A. Define λ to be the alternating character of H with respect to A:

λ(h) =

{

1 if h ∈ A

−1 otherwise.

The induced monomial representation Γ := λG has centralizer algebra spanned
by weighted adjacency matrices. It may be that the associated weight ω is trivial
or has rank smaller than the rank of the scheme. The entries in the weighted
adjacency matrices are 0 and fourth roots of unity, thus it may happen that ω
has non-real values.

To determine the rank of ω, we fix a transversal {t1 = 1, t2, . . . , tn} to H in
G. The action of G on X is equivalent to the action on cosets modulo H, so we
may label the points as cosets tiH. The nonzero entry in column j of Γ(σ) for
σ ∈ G is then

λ(t−1
i σtj)

in row i, where σtj ∈ tiH. The entries in Aω
i are determined by

Aω
i (x, y) =

{

αiλ(t−1
k σ) · λ(t−1

j σti) if σ(H, tiH) = (x, y)

0 if (x, y) 6∈ fi

where σ ∈ tkH, σti ∈ tjH and αi = 1 if ω is real-valued. Specifically, αi is
determined by choosing τi ∈ G such that

τi(H, tiH) = (tiH, H)

which must be possible since Aω
i is an Hermitian matrix. Then

αiλ(t−1
i τi)λ(τiti) = αi

hence
α2

i = λ(t−1
i τ2

i ti).

The relevant orbitals are those indexed by i such that Aω
i (x, y) is well-

defined. That is, all i such that

λ(σ) = λ(t−1
i σti) ∀σ ∈ GH,tiH .
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The weight ω then has rank equal to the number of relevant orbitals.

The T (5) example arises in this way, afforded by the action of the alternating
group A5 on pairs from {1, 2, 3, 4, 5}. Regular weights on T (n) afforded by the
action of An for n > 5 have rank 2, thus do not supply examples to realize the
feasible rank 3 parameters of section 2. The proof of this fact is given in the next
section, where we discuss the group approach in the more general setting of the
Johnson scheme.

4. The Johnson scheme

Let J = J(n, k) be the well-known Johnson scheme defined as follows. Let

X = {1, 2, . . . , n} with n ≥ 5. Fix k ≤
n

2
and make the following relations on

the

(

n

k

)

k-element subsets of X : two sets are jth associates if and only if their

intersection has cardinality k − j. Observe that J is a rank k + 1 association
scheme, equivalent to T (n) when k = 2.

The group G = An acts rank k+1 on the k-sets, affording the Johnson scheme.
The stabilizer of the k-set x = {1, 2, . . . , k} is

Gx ≃ (Ak × An−k) .〈(1, 2)(k + 1, k + 2)〉.

Since Gx contains an index 2 subgroup A ≃ Ak ×An−k, there is a regular weight
on J associated with a monomial representation of G. The theorem below gives
the relevant orbitals for the weighted scheme.

Theorem. Let ω be a regular weight on J such that the weighted adjacency
algebra is the centralizer algebra of a monomial representation of G = An induced
from the linear representation of Gx with kernel A ≃ Ak×An−k. Then the indices
of the relevant orbitals of the weighted scheme are given by the table below.

k < ⌊n
2
⌋ k = n−1

2
(n odd) k = n

2
(n even)

0, 1 0, 1, k 0, 1, k − 1, k

Remark. The only cases in which ω has full rank are (n, k) = (5, 2) and
(n, k) = (6, 3).

Proof. Let G = An and define x, Gx, A, λ as above. Let Γ be the monomial
representation of G induced from λ and let Iω be the indexing set for the relevant
orbitals of the associated weighted scheme J ω.

Choose tj ∈ G as follows so that

tjx := {1, 2, . . . , k − j, k + 1, k + 2, . . . , k + j} (1 ≤ j ≤ k)
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is a representative for the jth orbit under Gx:

tj = (k − j + 1, k + 1)(k − j + 2, k + 2) · · · (k, k + j) for j even,

tj = (k − j + 1, k + 1)(k − j + 2, k + 2) · · · (k, k + j)(k + 1, k + 2) j > 1 odd,

t1 = (k, k + 1)(k + 2, k + 3).

Recall

j ∈ Iω ⇐⇒ λ(t−1
j htj) = λ(h) ∀h ∈ Gx ∩ Gtjx.

For h ∈ Gx, λ(h) = 1 if and only if h ∈ A, that is if h acts evenly on x.
We show 1 ∈ Iω. For h ∈ Gx ∩ Gt1x, h fixes k and k + 1 pointwise and fixes

the set {1, 2, . . . , k − 1}. So

t−1
1 ht1 = (k + 2, k + 3)h(k + 2, k + 3)

which acts evenly on x if and only if h does. Thus 1 ∈ Iω.
Next, we show j 6∈ Iω for j > 1, k + j + 2 ≤ n. Take

h = (k + j − 1, k + j)(k + j + 1, k + j + 2) ∈ Gx ∩ Gtjx.

Then

t−1
j htj = (k − 1, k)(k + j + 1, k + j + 2)

which acts as the transposition (k − 1, k) on x. But h fixes x pointwise, thus
j 6∈ Iω.

It remains to treat the cases k + j + 2 > n. Pairs (k, j) which occur here are

(

n − 1

2
,
n − 1

2

)

,
(n

2
,
n

2
− 1

)

and
(n

2
,
n

2

)

.

Suppose k ≥
n − 1

2
, j = k. Since tj takes i ∈ x to i + k, t−1

j htj acts on x just

as h acts on the set {k + 1, k + 2, . . . , 2k}. But h acts evenly on this set if and
only if h acts evenly on x. Thus j ∈ Iω.

Suppose k =
n

2
and j = k − 1. For h ∈ Gx ∩ Gtjx, h fixes the sets

{1}, {2, 3, . . . , k}, {k + 1, k + 2, . . . , n − 1}, {n}.

Therefore h must have the same parity on x and {k + 1, k + 2, . . . , n}. Since
tj translates i ∈ x, i > 1 by k − 1, t−1

j htj acts on {2, 3, . . . , k} just as h acts

on {k + 1, k + 2, . . . , n − 1}. Hence t−1
j htj has the same parity on x as h, and

j ∈ Iω. �
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5. Example: J (6, 3)

We use the notation of section 4, where n = 6, k = 3, so G = A6.

5.1. Intersection matrices. Intersection matrices for the J (6, 3) scheme are

M0 = I4, M1 =







0 1 0 0
9 4 4 0
0 4 4 9
0 0 1 0







M2 =







0 0 1 0
0 4 4 9
9 4 4 0
0 1 0 0






M3 =







1
1

1
1






.

5.2. Weighted intersection matrices. We compute αi as in section 3 to see
that ω is not real-valued. We have

t1 = (34)(56)

t2 = (24)(35)

t3 = (1425)(36).

In each case, we may take τi = ti. For i = 1, 2 ti is a transposition and
α2

i = λ(1) = 1. But
α2

3 = λ(t23) = λ ((12)(45)) = −1

so entries of Aω
3 are ±i and ω is not real-valued.

The weighted intersection matrices are given below.

Mω
0 = I4, Mω

1 =







0 1 0 0
9 0 2 0
0 2 −2 −9i
0 0 i 0







Mω
2 =







0 0 1 0
0 2 −2 9i
9 −2 0 0
0 −i 0 0






M3 =







1
−i

i
1







Remark. It is clear from the matrices above that the weighted adjacency algebra
Aω is not commutative. Hence, the trace character ζ is not the sum of linear
constituents ([4]). Degrees (multiplicities) of the constituents of ζ correspond to
multiplicities (degrees) of the constituents of the monomial representation Γ of
G. Thus Γ has irreducible constituents of multiplicity greater than 1. Let

ζ =

r
∑

i=1

ziζi



16 A. D. SANKEY

where ζi is irreducible of degree ei. Since Aω has dimension 4,

r
∑

i=1

e2
i = 4

([4, section 5]). We conclude that e1 = 2 and r = 1. So, ζ has one degree 2
constituent which must have multiplicity 10. It follows that Γ has a single degree
10 constituent of multiplicity 2. In the character table for G in [2], this is χ7.
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