QUOTIENTS OF COHERENT CONFIGURATIONS

A. D. Sankey

Abstract

A result of C. D. Godsil and W. J. Martin ([GM]) gives conditions under which a partition of the vertex set of an association scheme induces a quotient association scheme. This work extends that result to coherent configurations. We provide a concrete description of the basic relations of the quotient scheme, and a characterization of its parameters. Equivalent conditions to those in [GM] are determined.

1. Introduction

The standard approach to quotient association schemes is to find, within an imprimitive association scheme, a subset of the basic relations or colors which forms an equivalence relation. This determines a partition of the vertex set, and also induces a partition of the colors. The quotient scheme then has equivalence classes of vertices as points, and equivalence classes of colors as its basic relations ([BCN], [BI]). This technique is also applied in the more general settings of coherent configurations, semi-coherent configurations, and relation schemes ([DGH1], [DGH2]).

Quotients in the sense of Godsil and Martin ([GM]) are not necessarily derived from equivalence relations on colors. That is, examples exist in which two points in the same cell of a vertex partition are i-related, and two points in different cells are i-related as well. What distinguishes the basic relations in the quotient scheme, then, is not a particular subset or equivalence class of colors, but rather a multiset. For example, cells $[x]$ and $[y]$ may be joined by $3 i$-arcs, $5 j$-arcs and $2 k$-arcs, while $[x]$ is joined to $[z]$ by $3 i$'s, $4 j$'s and $3 k$'s.

The supposition of an equitable partition σ of the vertex set is the condition that ensures these multisets are well-defined: the multiset of colors from $x_{1} \in[x]$ to [y] does not depend on the choice of x_{1}. In [GM], further assumptions that i) σ has pairwise isometric cells; and ii) cells of σ are simple imply that the quotient algebra modulo σ is the Bose-Mesner algebra of an association scheme. We show the multisets are the basic relations for this quotient scheme, and extend this to the setting of coherent configurations.

In section 2 we give some necessary definitions and notational conventions. The multisets are defined in section 3, and the isometric and simple properties are discussed in this context. Section 4 includes equivalent conditions to those in [GM], under which a quotient is coherent. The parameters of such a quotient scheme are described in section 5 .

2. Preliminaries

For basic definitions and facts about coherent configurations, the reader is referred to [DGH1]. One version of the defining axioms is given below for reference. Let \mathcal{A} be a coherent configuration (cc) with vertex set X and basic relations given by matrices $A_{0}, A_{1}, \ldots, A_{d}$. These $(0,1)$ matrices satisfy:

2.1.

(i) $\sum_{i \in \Omega} A_{i}=I$ for some $\Omega \subseteq\{0, \ldots, d\}$,
(ii) $\sum_{i=0}^{d} A_{i}=J$,
(iii) $A_{i}^{T}=A_{i^{*}}, i^{*} \in\{0, \ldots, d\}$
(iv) $A_{i} \cdot A_{j}=\sum_{i=0}^{d} p_{i j}^{k} A_{k}$.

The coherent algebra $\left\langle A_{i}\right\rangle_{i=0, \ldots, d}$, where the span is over \mathbb{C}, will be denoted \mathbb{A}. The term color will be used interchangeably with relation. We will say the color i joins a vertex x to a vertex y if x is i-related to y.

Condition 2.1 (i) determines the standard partition Σ of the vertices into types: $x \in X$ has type i if x is i-related to itself.

Let σ be a partition of the vertex set X. Write $[x]$ for the cell of σ containing x. We say σ is equitable if for any ordered pair of cells $([x],[y])$ and for any color i, the number of i-arcs starting at $x_{1} \in[x]$ and ending in $[y]$ is independent of the choice of $x_{1} \in[x]$. (It follows that the number starting in $[y]$ and ending at x_{1} is also fixed.)

An equitable partition σ of X is necessarily a refinement of Σ. That is, if x has type i and y has type $j \neq i$, then x and y must be in different cells of σ because the number of i-arcs from x to $[x]$ is 1 and the number from y to $[x]$ is 0 . In fact, σ induces an equitable partition on each cell of Σ. We say a cell of σ has type i if the vertices within that cell have type i.

Suppose σ is an equitable partition of X and let $r=|\sigma|$. Let \bar{A}_{i} denote the r by r matrix with rows and columns indexed by the cells of σ, and ($[x],[y]$) entry equal to the number of i-arcs from $x_{1} \in[x]$ to $[y]$.

The product $\bar{A}_{i} \cdot \bar{A}_{j}$ has $([x],[y])$ entry equal to the number of $i-j$ paths from $x_{1} \in[x]$ to $[y]$. But this is just $p_{i j}^{k}$, counted for each k-arc joining x_{1} to $[y]$ and for each k. Thus

$$
\begin{equation*}
\bar{A}_{i} \cdot \bar{A}_{j}=\sum_{k=0}^{d} p_{i j}^{k} \bar{A}_{k} \tag{2.2}
\end{equation*}
$$

and $\mathbb{A} / \sigma:=\left\langle\bar{A}_{i}\right\rangle_{0 \leq i \leq d}$ is closed under multiplication. Note that commutativity (symmetry) of \mathbb{A} implies that of \mathbb{A} / σ.

The main result of [GM] answers the question of when the algebra \mathbb{A} / σ is itself the Bose-Mesner algebra of an association scheme.

3. Multisets

Another way to characterize this situation is to define the multiset joining $[x]$ to [y]. Let

$$
\lambda:=\left\{0^{\mu_{0}^{\lambda}}, 1^{\mu_{1}^{\lambda}}, \ldots, d^{\mu_{d}^{\lambda}}\right\}
$$

where μ_{i}^{λ} is the number of i-arcs joining $x_{1} \in[x]$ to $[y]$. The assumption that σ is an equitable partition means that these multisets are well-defined. Observe that the μ_{i}^{λ} are precisely the distinct entries of \bar{A}_{i}.

Now for each multiset λ, let M_{λ} be the matrix with rows and columns indexed by the cells of σ and $([x],[y])$ entry equal to 1 if λ is the multiset joining $[x]$ to $[y]$, 0 otherwise. Let Λ be the set of distinct multisets. M_{λ} is related to the \bar{A}_{i} by:

$$
\bar{A}_{i}=\sum_{\lambda \in \Lambda} \mu_{i}^{\lambda} M_{\lambda} .
$$

Put $\mathcal{M}=\left\{M_{\lambda}\right\}_{\lambda \in \Lambda}$. It will turn out, in the case that \mathbb{A} / σ is the coherent algebra of a cc, that Λ is the set of basic relations.

Suppose λ is the multiset joining a cell $[x]$ to itself. Then λ contains exactly one element of Ω, hence λ does not join any two distinct cells. There is therefore a unique subset Λ_{0} of Λ such that

$$
\sum_{\lambda \in \Lambda_{0}} M_{\lambda}=I
$$

We have also, by definition,

$$
\sum_{\lambda \in \Lambda} M_{\lambda}=J
$$

We have shown
Lemma 3.1. \mathcal{M} satisfies (i) and (ii) of 2.1.
We shall see that 2.1 (iii) is satisfied if the cells of σ with the same type are pairwise isometric and (iv) is satisfied if the cells are simple. These two conditions are important in [GM] and are defined below in the terminology of multisets.

Given $\lambda \in \Lambda, M_{\lambda}$ induces a digraph on the cells of σ, defined as follows. Make $[x]$ adjacent to $[y]$ iff λ joins $[x]$ to $[y]$. We say two cells $[x]$ and $[y]$ of σ are isometric if for all λ, the out-degree of $[x]$ in this induced digraph is the same as that of $[y]$. Observe that isometric cells must be cells of the same type, or like cells. Isometric cells, in other words, look the same locally.

Lemma 3.2. If like cells of σ are pairwise isometric then \mathcal{M} satisfies 2.1 (iii).
Proof. We show first that isometric, like cells of σ have the same size. Let $[x]$ and $[y]$ be two such cells. Then $[x]$ is joined to itself by some multiset, say λ, and $[y]$ likewise. Now $|\lambda|$ is the number of points in $[x]$, and also the number of points in [y].

Next, we claim Λ inherits a pairing from the pairing on the colors of \mathcal{A}. That is, if

$$
\left(A_{i}\right)^{T}=A_{i^{*}} \quad(0 \leq i \leq d)
$$

then we define λ^{*} as follows. Let h_{α} denote the size of a cell of σ of type α. Suppose λ joins a cell $[x]$ of type α to a cell $[y]$ of type β. Put

$$
\mu_{i^{*}}^{\lambda^{*}}:=\frac{h_{\alpha}}{h_{\beta}} \mu_{i}^{\lambda} .
$$

We show λ^{*} is the multiset joining $[y]$ to $[x]$. The total number of i-arcs originating in $[x]$ and ending in $[y]$ is

$$
|[x]| \cdot \mu_{i}^{\lambda} .
$$

By reversing arcs, this equals the total number of i^{*}-arcs from $[y]$ to $[x]$. So

$$
|[x]| \cdot \mu_{i}^{\lambda}=|[y]| \cdot\left(\# i^{*} \text {-arcs joining } y_{1} \in[y] \text { to }[x]\right)
$$

which shows λ^{*} is the multiset joining $[y]$ to $[x]$. Therefore,

$$
M_{\lambda}^{T}=M_{\lambda^{*}}
$$

The second condition requires the notion of an induced partition. For our purposes, this will always be induced from a cell of σ, but this is not necessary in the definition. Let $[z]$ be a cell of σ, and write $e_{[z]}$ for the characteristic vector of $[z]$ with respect to the underlying set of cells of σ. This is an r by 1 column vector with a single nonzero entry. (Note this differs from [GM].) Now form

$$
\mathcal{D}([z]):=\left\langle\bar{A}_{i} \cdot e_{[z]}\right\rangle_{0 \leq i \leq d}
$$

and define $\pi=\pi_{[z]}$, the partition of the cells of σ induced by $[z]$, as follows. Put $[x]$ and $[y]$ in the same cell of π if and only if every element in $\mathcal{D}([z])$ agrees in these two entries.

We call $[z]$ a simple cell if the dimension of $\mathcal{D}([z])$ is equal to the number of cells in $\pi_{[z]}$. It is pointed out in [GM] that $[z]$ is simple $\Leftrightarrow \mathcal{D}([z])$ is closed under multiplication and contains the constants $\Leftrightarrow \mathcal{D}([z])$ equals the span of the characteristic vectors for the cells of π. Since $\mathcal{D}([z])$ is always contained in this span, the third statement above really means that $\mathcal{D}([z])$ contains the characteristic vectors of cells of π.

The colors of a cc are confined to one block of the color matrix. That is, each color relates vertices of one fixed type to vertices of another fixed type. A consequence of this is that the multisets are disjoint unless they join pairs of cells of the same types. Let Λ_{i} be the subset of Λ containing all multisets joining to cells of type i.
Then $\Lambda=\bigcup_{i \in \Omega} \Lambda_{i}$ defines a partition of Λ.
Let $[z]$ be a cell of σ of type i.
Lemma 3.3. There is a one-to-one correspondence between the set of cells of $\pi_{[z]}$ and the set Λ_{i}.

Proof. We claim cells $[x]$ and $[y]$ are joined to $[z]$ by the same multiset iff they are in the same cell of $\pi_{[z]}$. Entry $[x]$ of $\bar{A}_{i} \cdot e_{[z]}$ is equal to the number of i-arcs joining $x_{1} \in[x]$ to $[z]$. If $[x]$ and $[y]$ have identical entries for all i, then they are joined by the same multiset to $[z]$. Conversely, if joined by the same multiset, the entries in $\bar{A}_{i} \cdot e_{[z]}$ match, so $[x]$ and $[y]$ are in the same cell of π.

Observe that the characteristic vector for a cell of $\pi_{[z]}$ is the $[z]$-column of M_{λ} for some $\lambda \in \Lambda$. (The multiset determined by the bijection above.) This shows:
Cor. 3.4. $[z]$ is simple iff $\mathcal{D}([z])$ contains column $[z]$ of M_{λ}, for all λ.

4. Quotient coherent configurations

In the theorem below, M_{λ}, \bar{A}_{i} and \mathbb{A} / σ are defined as in previous sections. Fix an ordering of Λ, let $r=|\Lambda|$ and define the $d+1$ by $r+1$ matrix M by

$$
M_{i j}:=\mu_{i}^{\lambda_{j}} \quad(0 \leq i \leq d, 0 \leq j \leq r) .
$$

(Row i of M gives the coefficients of \bar{A}_{i} written as a linear combination of the multiset matrices.) The rows of M^{T} are the same as the distinct rows of the outer distribution matrix of $[z]$ ([GM], $[\mathrm{BCN}])$.
Theorem 4.1. Let \mathcal{A} be a coherent configuration with coherent algebra \mathbb{A}, σ an equitable partition of \mathcal{A} with like cells pairwise isometric. Then (i)-(v) below are equivalent.
(i) M has a left inverse.
(ii) The cells of σ are simple.
(iii) \mathbb{A} / σ is a coherent algebra.
(iv) $M_{\lambda} \in \mathbb{A} / \sigma$ for all $\lambda \in \Lambda$.
(v) $\left\{M_{\lambda}\right\}_{\lambda \in \Lambda}$ is the set of basic relations for a cc whose coherent algebra is \mathbb{A} / σ.

Proof.
$(i) \Rightarrow(i i)$. Let C be a left inverse of M, say

$$
C=\left(c_{k}^{\lambda}\right)_{\lambda, k}
$$

Then for all $\lambda, \nu \in \Lambda$,

$$
\sum_{k=0}^{d} c_{k}^{\lambda} \mu_{k}^{\nu}=\delta_{\lambda \nu}
$$

Let $[z]$ be a cell of σ. With $\pi=\pi_{[z]}$ as defined above, we show that the $[z]$-column of M_{λ} is in $\mathcal{D}([z])$, then apply Cor. 3.4. We claim

$$
M_{\lambda} e_{[z]}=\sum_{k} c_{k}^{\lambda} \bar{A}_{k} e_{[z]}
$$

The $[x]$ entry of the sum on the right is

$$
\begin{aligned}
& \sum_{k} c_{k}^{\lambda} \cdot\left(\# k \text { from } x_{1} \in[x] \text { to }[z]\right) \\
= & \sum_{k} c_{k}^{\lambda} \cdot \mu_{k}^{\nu} \quad \text { where } \nu \text { is the multiset } \\
= & \delta_{\lambda \nu} .
\end{aligned}
$$

Thus the sum on the right is the characteristic vector $M_{\lambda} e_{[z]}$.
$(i i) \Rightarrow(i)$. Assuming $[z]$ is simple implies there are constants c_{k}^{λ} with

$$
M_{\lambda} e_{[z]}=\sum_{k} c_{k}^{\lambda} \bar{A}_{k} e_{[z]}
$$

But then $\sum_{k} c_{k}^{\lambda} \mu_{k}^{\nu}=\delta_{\lambda \nu}$, and the matrix $C:=\left(c_{k}^{\lambda}\right)_{\lambda, k}$ is a left inverse of M.
$(i) \Rightarrow(i v)$. Assume there is a matrix $C=\left(c_{k}^{\lambda}\right)_{\lambda, k}$ with $C M=I$. We claim

$$
M_{\lambda}=\sum_{k} c_{k}^{\lambda} \bar{A}_{k}
$$

The $([x],[y])$ entry on the right is

$$
\sum_{k} c_{k}^{\lambda} \mu_{k}^{\nu}
$$

where ν is the multiset joining $[x]$ to $[y]$. Since this equals $\delta_{\lambda \nu}$, the sum on the right is M_{λ}.
$(i v) \Rightarrow(i)$. Suppose

$$
M_{\lambda}=\sum_{k} c_{k}^{\lambda} \bar{A}_{k}
$$

For each $\nu \in \Lambda$, choose an ordered pair $([x],[y])$ joined by ν. The $([x],[y])$ entry on the right is $\sum_{k} c_{k}^{\lambda} \mu_{k}^{\nu}$, and this must equal $\delta_{\lambda \nu}$.
$(i v) \Leftrightarrow(v)$. Since $\mathbb{A} / \sigma \subseteq\left\langle M_{\lambda}\right\rangle_{\lambda \in \Lambda}$ always, (iv) implies

$$
\mathbb{A} / \sigma=\left\langle M_{\lambda}\right\rangle
$$

Then by $2.2, \mathcal{M}$ satisfies 2.1 (iv). We conclude that \mathcal{M} is the set of basic relations of a cc, and its coherent algebra is $\mathbb{A} / \sigma .(v) \Rightarrow(i v)$ is immediate.
$(i i i) \Leftrightarrow(v)$. Assuming (iii), \mathbb{A} / σ has a basis, say

$$
D:=\left\{D_{0}, D_{1}, \ldots, D_{l}\right\}
$$

consisting of all $(0,1)$ matrices which are primitive with respect to the Schur product. That is, there are constants $\alpha_{i j}$ such that

$$
\bar{A}_{i} \circ D_{j}=\alpha_{i j} D_{j}
$$

(see [BCN], 2.6; [DGH1]). Clearly M_{λ} is primitive, but may not be in \mathbb{A} / σ. Each entry of \bar{A}_{i} is μ_{i}^{λ} for some λ. Let λ, ν be distinct elements of Λ. If the support of D_{j} overlaps the support of both M_{λ} and M_{ν}, then we have a contradiction: $\mu_{i}^{\lambda}=\mu_{i}^{\nu}$ for all i, and then $\lambda=\nu$. Thus the support of D_{j} is contained in the support of M_{λ} for some λ. On the other hand, we claim for each nonzero entry of M_{λ} the corresponding entry must be nonzero in D_{j}, for some j. This follows because for a nonzero entry in M_{λ}, the corresponding entry is nonzero also in \bar{A}_{i} for some i, and D is a basis for \mathbb{A} / σ. We have $M_{\lambda}=\sum D_{j}$, where the sum is taken over j in some subset of $\{0, \ldots, l\}$. But then $M_{\lambda} \in \mathbb{A} / \sigma$, and since

$$
\bar{A}_{i} \circ M_{\lambda}=\mu_{i}^{\lambda} M_{\lambda}
$$

we find $\mathcal{M}_{\lambda} \in D$. Finally, \mathcal{M} spans \mathbb{A} / σ, so $\mathcal{M}=D$.
Now, the fact that \mathcal{M} is a basis for \mathbb{A} / σ means that for some constants $\bar{p}_{\lambda \nu}^{\tau}$,

$$
M_{\lambda} \cdot M_{\nu}=\sum_{\tau \in \Lambda} \bar{p}_{\lambda \nu}^{\tau} M_{\tau}
$$

hence (iv) of 2.1 is satisfied by \mathcal{M}. By 3.1 and 3.2 , (i)-(iii) are also satisfied. We have shown these are the basic relations for a cc, and its coherent algebra is \mathbb{A} / σ. $(v) \Rightarrow(i i i)$ is immediate.
Remark. $M_{\lambda}=\sum_{i} c_{i}^{\lambda} \bar{A}_{i}$ does not define the constants c_{i}^{λ} uniquely, unless $r=d$.

5. Example

This family of examples is based on [DGH3, Example 4.1]. Let \mathcal{A} be a cc derived as follows from two symmetric (v, k, λ)-designs, say $\mathcal{D}_{1}, \mathcal{D}_{2}$, with the same point set P. The vertex set is the disjoint union of $P \times P$ (type 1 vertices) and $\left\{B_{1} \times B_{2} \mid B_{i}\right.$ is a block of $\left.D_{i},(i=1,2)\right\}$ (type 2).

Two vertices of type 1 are equal, adjacent or non-adjacent, where adjacency is defined as having one coordinate in common. Number these colors of the cc 0,1 and 2 respectively. The fiber of \mathcal{A} with type 1 vertices is a symmetric, rank 3 cc , equivalent to a strongly regular graph $L_{2}\left(v^{2}\right)$.

The fiber with type 2 vertices is defined similarly, and we number the equality, adjacency, and non-adjacency colors 3,4 , and 5 respectively.

A type 1 vertex $\left(P_{1}, P_{2}\right)$ is incident with, adherent to, or separated from a vertex $B_{1} \times B_{2}$ of type 2. Number these relations $6,7,8$ respectively. Incidence is defined in the obvious way. Adherent means exactly one of P_{1} and P_{2} is contained in the corresponding block. Separated means that P_{i} is not contained in $B_{i}(i=1,2)$. Let $9=6^{*}, 10=7^{*}, 11=8^{*}$.
\mathcal{A} is an example of a strongly regular design of the second kind ([DGH3]). We now define an equitable partition σ of the vertex set of \mathcal{A}. Partition both types of vertices by first coordinate. The cells of σ are then cliques in the lattice graphs.

The multisets are:
(1) Between two cells of type 1: $\quad \lambda_{0}:=\left\{0^{1}, 1^{v-1}\right\} \quad \lambda_{1}:=\left\{1^{1}, 2^{v-1}\right\}$
(2) Between two cells of type 2: $\quad \lambda_{2}:=\left\{3^{1}, 4^{v-1}\right\} \quad \lambda_{3}:=\left\{4^{1}, 5^{v-1}\right\}$
(3) Between type 1 and type 2: $\quad \lambda_{4}:=\left\{6^{k}, 7^{v-k}\right\} \quad \lambda_{5}:=\left\{7^{k}, 8^{v-k}\right\}$
(4) $\lambda_{6}:=\lambda_{4}^{*}, \quad \lambda_{7}:=\lambda_{5}^{*}$.

It can easily be seen that \mathcal{A} / σ is a cc of type $\left[\begin{array}{ll}2 & 2 \\ & 2\end{array}\right]$. It is essentially equivalent to the original pair of symmetric designs.

6. Parameters

Let \mathcal{A} / σ be a quotient cc with relations given by multisets and notation as in 4.1. In particular, fix a set of constants c_{k}^{λ}. If k joins vertices of type α to vertices of type β, put $v_{k}:=p_{k k^{*}}^{\alpha}$. Similarly, for each multiset λ, define $v_{\lambda}:=\bar{p}_{\lambda \lambda^{*}}^{\alpha}$. To determine v_{λ}, we count v_{k} and apply 4.1 (i). That is,

$$
v_{k}=\sum_{\lambda} v_{\lambda} \mu_{k}^{\lambda}
$$

Writing $v=\left[v_{0}, v_{1}, \ldots, v_{d}\right]^{T}$ and $\bar{v}=\left[v_{\lambda_{0}}, v_{\lambda_{1}}, \ldots, v_{\lambda_{r}}\right]^{T}$ we have $v=M \bar{v}$. Multiplying both sides by C implies

$$
\begin{equation*}
v_{\lambda}=\sum_{k} c_{k}^{\lambda} v_{k} \tag{6.1}
\end{equation*}
$$

The parameters $\bar{p}_{\lambda \nu}^{\tau}$ are defined by the products

$$
M_{\lambda} M_{\nu}=\sum_{\tau} \bar{p}_{\lambda \nu}^{\tau} M_{\tau}
$$

Then $\bar{p}_{\lambda \nu}^{\tau}$ is of course the number of cells $[z]$ with $[x]$ joined by λ to $[z]$ and $[z]$ by ν to $[y]$, where $([x],[y])$ is any ordered pair joined by τ. These are related to the given cc parameters and the multiset constants as follows.

Lemma 6.2.

$$
\bar{p}_{\alpha \beta}^{\tau}=\sum_{i, j, k} c_{i}^{\alpha} c_{j}^{\beta} \mu_{k}^{\tau} p_{i j}^{k}
$$

Proof. Given $[x]$ joined to $[y]$ by τ, count all $i-j$ paths from $x_{1} \in[x]$ to [$\left.y\right]$. First, $p_{i j}^{k}$ counts $i-j$ paths from x_{1} to some $y_{1} \in[y]$. Including all possibilities for $y_{1} \in[y]$, we get

$$
\sum_{k} \mu_{k}^{\tau} p_{i j}^{k}
$$

On the other hand, we may count $i-j$ paths through $[z]$ for all possible $[z]$. This gives

$$
\sum_{\lambda, \nu} \bar{p}_{\lambda \nu}^{\tau} \mu_{i}^{\lambda} \mu_{j}^{\nu}
$$

Equating these, we then make use of C to solve for $\bar{p}_{\lambda \nu}^{\tau}$.

$$
\sum_{k} \mu_{k}^{\tau} p_{i j}^{k}=\sum_{\lambda, \nu} \bar{p}_{\lambda \nu}^{\tau} \mu_{i}^{\lambda} \mu_{j}^{\nu}
$$

Multiply both sides by c_{i}^{α} and sum over i.

$$
\begin{aligned}
\sum_{i} c_{i}^{\alpha}\left(\sum_{k} \mu_{k}^{\tau} p_{i j}^{k}\right) & =\sum_{\lambda, \nu} \sum_{i} c_{i}^{\alpha} \bar{p}_{\lambda \nu}^{\tau} \mu_{i}^{\lambda} \mu_{j}^{\nu} \\
\sum_{i, k} c_{i}^{\alpha} \mu_{k}^{\tau} p_{i j}^{k} & =\sum_{\lambda, \nu} \bar{p}_{\lambda \nu}^{\tau}\left(\sum_{i} c_{i}^{\alpha} \mu_{i}^{\lambda}\right) \mu_{j}^{\nu} \\
\sum_{i, k} c_{i}^{\alpha} \mu_{k}^{\tau} p_{i j}^{k} & =\sum_{\lambda, \nu} \bar{p}_{\lambda \nu}^{\tau} \delta_{\alpha \lambda} \mu_{j}^{\nu}
\end{aligned}
$$

Now multiply by c_{j}^{β} and sum over j.

$$
\begin{aligned}
\sum_{j} c_{j}^{\beta}\left(\sum_{i, k} c_{i}^{\alpha} \mu_{k}^{\tau} p_{i j}^{k}\right) & =\sum_{\nu} \bar{p}_{\alpha \nu}^{\tau} \sum_{j} c_{j}^{\beta} \mu_{j}^{\nu} \\
\sum_{i, j, k} c_{i}^{\alpha} c_{j}^{\beta} \mu_{k}^{\tau} p_{i j}^{k} & =\sum_{\nu} \bar{p}_{\alpha \nu}^{\tau} \delta_{\beta \nu} \\
\sum_{i, j, k} c_{i}^{\alpha} c_{j}^{\beta} \mu_{k}^{\tau} p_{i j}^{k} & =\bar{p}_{\alpha \beta}^{\tau}
\end{aligned}
$$

The fact that \mathbb{A} / σ is Schur-closed implies

$$
\mu_{i}^{\lambda} \mu_{j}^{\lambda}=\sum_{k} c_{i j}^{k} \mu_{k}^{\lambda}
$$

where the $c_{i j}^{k}$ are constants independent of λ. Indeed,

$$
\begin{aligned}
\bar{A}_{i} \circ \bar{A}_{j} & =\sum_{\lambda} \mu_{i}^{\lambda} \mu_{j}^{\lambda} M_{\lambda} \\
& =\sum_{\lambda, k} \mu_{i}^{\lambda} \mu_{j}^{\lambda} c_{k}^{\lambda} \bar{A}_{k} \\
& =\sum_{\tau, \lambda, k} \mu_{i}^{\lambda} \mu_{j}^{\lambda} c_{k}^{\lambda} \mu_{k}^{\tau} M_{\tau}
\end{aligned}
$$

We have shown

$$
\begin{equation*}
\mu_{i}^{\lambda} \mu_{j}^{\lambda}=\sum_{k} c_{i j}^{k} \mu_{k}^{\lambda} \quad \text { where } \quad c_{i j}^{k}=\sum_{\nu} \mu_{i}^{\nu} \mu_{j}^{\nu} c_{k}^{\nu} \tag{6.3}
\end{equation*}
$$

7. Remarks

(1) The standard partition Σ is itself an equitable partition, since the number of i-arcs from a vertex of type α to a cell of type β is $p_{i i^{*}}^{\alpha} \cdot p_{i \beta}^{i}$. The quotient modulo Σ is a trivial cc with 1-point fibers.
(2) The number of fibers in a quotient is the same as in the original cc. In particular, a cc affords a quotient which is an association scheme only if it is homogeneous (possibly non-commutative). The quotient is commutative iff for all mulitsets τ

$$
\sum_{k} \mu_{k}^{\tau} p_{i j}^{k}=\sum_{k} \mu_{k}^{\tau} p_{j i}^{k} \quad(0 \leq i, j \leq d)
$$

This occurs iff the number of $i-j$ paths from $x_{1} \in[x]$ to $[y]$ equals the number of $j-i$ paths.

References

[BCN] A. E. Brouwer, A. M. Cohen, and A. Neumaier, "Distance Regular Graphs", SpringerVerlag, Berlin, 1989.
[BI] E. Bannai and T. Ito, "Algebraic Combinatorics I: Association Schemes", Benjamin/Cummings, London, 1984.
[GM] C. D. Godsil and W. J. Martin, Quotients of association schemes, Journal of Combinatorial Theory, Series A 69 (1995), 185-199.
[DGH1] D. G. Higman, Coherent algebras, Linear Algebra and its Applications 93 (1987), 209239.
[DGH2] , The parabolics of a semi-coherent configuration, preprint.
[DGH3] , Strongly regular designs of the second kind, European Journal of Combinatorics 16 (1995), 479-490.

Department of Mathematics, Slippery Rock University, Slippery Rock, PA 16057
E-mail address: alyssa.sankey@sru.edu

