QUOTIENTS OF COHERENT CONFIGURATIONS

A. D. SANKEY

ABSTRACT. A result of C. D. Godsil and W. J. Martin ([GM]) gives conditions
under which a partition of the vertex set of an association scheme induces a quotient
association scheme. This work extends that result to coherent configurations. We
provide a concrete description of the basic relations of the quotient scheme, and
a characterization of its parameters. Equivalent conditions to those in [GM] are
determined.

1. INTRODUCTION

The standard approach to quotient association schemes is to find, within an im-
primitive association scheme, a subset of the basic relations or colors which forms
an equivalence relation. This determines a partition of the vertex set, and also
induces a partition of the colors. The quotient scheme then has equivalence classes
of vertices as points, and equivalence classes of colors as its basic relations ([BCN],
[BI]). This technique is also applied in the more general settings of coherent con-
figurations, semi-coherent configurations, and relation schemes ([DGH1], [DGH2]).

Quotients in the sense of Godsil and Martin ([GM]) are not necessarily derived
from equivalence relations on colors. That is, examples exist in which two points
in the same cell of a vertex partition are i-related, and two points in different cells
are i-related as well. What distinguishes the basic relations in the quotient scheme,
then, is not a particular subset or equivalence class of colors, but rather a multiset.
For example, cells [x] and [y] may be joined by 3 i-arcs, 5 j-arcs and 2 k-arcs, while
[x] is joined to [z] by 3 é’s, 4 j’s and 3 k’s.

The supposition of an equitable partition o of the vertex set is the condition that
ensures these multisets are well-defined: the multiset of colors from 1 € [z] to
[y] does not depend on the choice of z;. In [GM], further assumptions that i) o
has pairwise isometric cells; and ii) cells of o are simple imply that the quotient
algebra modulo o is the Bose-Mesner algebra of an association scheme. We show
the multisets are the basic relations for this quotient scheme, and extend this to
the setting of coherent configurations.

In section 2 we give some necessary definitions and notational conventions. The
multisets are defined in section 3, and the isometric and simple properties are
discussed in this context. Section 4 includes equivalent conditions to those in [GM],
under which a quotient is coherent. The parameters of such a quotient scheme are
described in section 5.

Typeset by ApS-TEX



2 A. D. SANKEY

2. PRELIMINARIES

For basic definitions and facts about coherent configurations, the reader is re-
ferred to [DGH1]. One version of the defining axioms is given below for reference.
Let A be a coherent configuration (cc) with vertex set X and basic relations given
by matrices Ao, Ay, ..., Ag. These (0,1) matrices satisfy:

2.1.

(1) ZAi = [ for some Q C {0,...,d},
i€Q

d
(i) Y A=,
1=0

(iii) AT = A, i* €{0,... ,d}
d
(iV) Ai . Aj = prjAk.
i=0
The coherent algebra (A;),_, 4> where the span is over C, will be denoted A. The
term color will be used interéhangeably with relation. We will say the color ¢ joins
a vertex x to a vertex y if x is i-related to y.

Condition 2.1 (i) determines the standard partition X of the vertices into types:
x € X has type i if x is i-related to itself.

Let o be a partition of the vertex set X. Write [z] for the cell of o containing
x. We say o is equitable if for any ordered pair of cells ([z], [y]) and for any color
i, the number of i-arcs starting at z; € [z] and ending in [y] is independent of the
choice of 1 € [z]. (It follows that the number starting in [y] and ending at z; is
also fixed.)

An equitable partition o of X is necessarily a refinement of 3. That is, if x has
type i and y has type j # i, then & and y must be in different cells of ¢ because
the number of j-arcs from z to [z] is 1 and the number from y to [z] is 0. In fact,
o induces an equitable partition on each cell of ¥. We say a cell of o has type ¢ if
the vertices within that cell have type <.

Suppose ¢ is an equitable partition of X and let r = |o|. Let A; denote the r by
r matrix with rows and columns indexed by the cells of o, and ([z], [y]) entry equal
to the number of i-arcs from z; € [z] to [y].

The product A; - A; has ([z], [y]) entry equal to the number of i-j paths from
1 € [z] to [y]. But this is just pf;, counted for each k-arc joining 2 to [y] and for
each k. Thus

d
A A =S kA, (2:2)
k=0

and Afo = (Ai),,,
(symmetry) of A implies that of A/o.

The main result of [GM)] answers the question of when the algebra A /o is itself
the Bose-Mesner algebra of an association scheme.

is closed under multiplication. Note that commutativity

3. MULTISETS

Another way to characterize this situation is to define the multiset joining [z] to
[y]. Let

A= {010, 1ML drdYy
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where p is the number of i-arcs joining #1 € [z] to [y]. The assumption that o
is an equitable partition means that these multisets are well-defined. Observe that
the p? are precisely the distinct entries of A;.

Now for each multiset A, let M) be the matrix with rows and columns indexed
by the cells of o and ([z], [y]) entry equal to 1 if X is the multiset joining [z] to [y],

0 otherwise. Let A be the set of distinct multisets. M) is related to the A; by:

;1i:::£:;¢?ﬂ4;.
AEA

Put M = {My},c,- It will turn out, in the case that A/o is the coherent algebra
of a cc, that A is the set of basic relations.

Suppose A is the multiset joining a cell [z] to itself. Then A contains exactly
one element of 2, hence A\ does not join any two distinct cells. There is therefore a
unique subset Ay of A such that

E:NA:L

AEAg

We have also, by definition,

E:NA:J

AEA
We have shown
Lemma 3.1. M satisfies (i) and (i) of 2.1.

We shall see that 2.1 (iii) is satisfied if the cells of o with the same type are
pairwise isometric and (iv) is satisfied if the cells are simple. These two conditions
are important in [GM] and are defined below in the terminology of multisets.

Given A € A, M, induces a digraph on the cells of o, defined as follows. Make
[] adjacent to [y] iff A joins [z] to [y]. We say two cells [z] and [y] of o are isometric
if for all A, the out-degree of [z] in this induced digraph is the same as that of [y].
Observe that isometric cells must be cells of the same type, or like cells. Isometric
cells, in other words, look the same locally.

Lemma 3.2. If like cells of o are pairwise isometric then M satisfies 2.1 (iii).

Proof. We show first that isometric, like cells of o have the same size. Let [z] and
[y] be two such cells. Then [z] is joined to itself by some multiset, say A, and [y]
likewise. Now |A| is the number of points in [z], and also the number of points in
[y]-
Next, we claim A inherits a pairing from the pairing on the colors of A. That is,
if
(A)T =A (0<i<d)

then we define A\* as follows. Let h,, denote the size of a cell of o of type a. Suppose
A joins a cell [z] of type a to a cell [y] of type 5. Put

* h
A lax
Mﬁ . hﬁlh
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We show A* is the multiset joining [y] to [x]. The total number of i-arcs originating
in [z] and ending in [y] is
[a]] - 423

By reversing arcs, this equals the total number of i*-arcs from [y] to [z]. So

[l)] - it = |[w]] - (# #*-axcs joining y; € [y] to [z])
which shows A* is the multiset joining [y] to [z]. Therefore,

MI =M,.. O

The second condition requires the notion of an induced partition. For our pur-
poses, this will always be induced from a cell of ¢, but this is not necessary in the
definition. Let [z] be a cell of o, and write e[ for the characteristic vector of [2]
with respect to the underlying set of cells of o. This is an r by 1 column vector
with a single nonzero entry. (Note this differs from [GM].) Now form

D([z]) := <Zi ) e[z]>0§i§d

and define 7 = 7, the partition of the cells of o induced by [z], as follows. Put [z]
and [y] in the same cell of 7 if and only if every element in D([z]) agrees in these
two entries.

We call [z] a simple cell if the dimension of D([z]) is equal to the number of cells
in 7). It is pointed out in [GM] that [2] is simple < D([z]) is closed under multi-
plication and contains the constants < D([z]) equals the span of the characteristic
vectors for the cells of 7. Since D([z]) is always contained in this span, the third
statement above really means that D([z]) contains the characteristic vectors of cells
of m.

The colors of a cc are confined to one block of the color matrix. That is, each color
relates vertices of one fixed type to vertices of another fixed type. A consequence
of this is that the multisets are disjoint unless they join pairs of cells of the same
types. Let A; be the subset of A containing all multisets joining to cells of type i.

Then A = U A; defines a partition of A.
i€Q
Let [z] be a cell of o of type i.

Lemma 3.3. There is a one-to-one correspondence between the set of cells of
and the set A;.

Proof. We claim cells [x] and [y] are joined to [z] by the same multiset iff they are
in the same cell of 7. Entry [z] of A; - e[ is equal to the number of i-arcs joining
x1 € [z] to [z]. If [z] and [y] have identical entries for all i, then they are joined by
the same multiset to [z]. Conversely, if joined by the same multiset, the entries in
Aj; - e[,) match, so [z] and [y] are in the same cell of 7. [

Observe that the characteristic vector for a cell of 7, is the [z]-column of M)
for some A € A. (The multiset determined by the bijection above.) This shows:

Cor. 3.4. [z] is simple iff D([2]) contains column [z] of My, for all .
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4. QUOTIENT COHERENT CONFIGURATIONS
In the theorem below, My, A; and A /o are defined as in previous sections. Fix
an ordering of A, let 7 = |A| and define the d + 1 by r + 1 matrix M by
A . .
M =p; (0<i<d, 0<j<r).

(Row i of M gives the coefficients of A; written as a linear combination of the
multiset matrices.) The rows of M7 are the same as the distinct rows of the outer
distribution matrix of [z] ([GM], [BCN]).

Theorem 4.1. Let A be a coherent configuration with coherent algebra A, o an
equitable partition of A with like cells pairwise isometric. Then (i)—(v) below are
equivalent.

(i) M has a left inverse.

ii) The cells of o are simple.

(ii)
(iii) A/o is a coherent algebra.
(iv) My € Ajo for all X € A.

(v) {Mx}\cn is the set of basic relations for a cc whose coherent algebra is A/o.

Proof.

(i) = (i1). Let C be a left inverse of M, say
C= (cg))\,k’

Then for all \,v € A,
d
Z CQMZ =0x-
k=0

Let [2] be a cell of 0. With 7 = 7] as defined above, we show that the [z]-column
of M) is in D([z]), then apply Cor. 3.4. We claim

M)\e[z] = Z C?Zke[z].
k

The [z] entry of the sum on the right is

Zcﬁ - (# k from z; € [z] to [2])

k
N v where v is the multiset
:Z Ck} /,I/k: « o e
- joining [z] to [z]
=0xy-
Thus the sum on the right is the characteristic vector Mye[,).

17) = (2). Assuming |z| 1s simple implies there are constants c;, wit

M,\e[z] = Z C?Zke[z].
k

But then Z cpty = Oy, and the matrix C := (cp)
K

ok is a left inverse of M.
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(i) = (iv). Assume there is a matrix C' = (CQ)A , with CM = I. We claim

M)\ = ZC%Z}C.
k

A v
chﬂk
k

where v is the multiset joining [z] to [y]. Since this equals dy,, the sum on the right
is M)\.

(iv) = (7). Suppose

The ([z], [y]) entry on the right is

M)\ = chzk
k

For each v € A, choose an ordered pair ([z], [y]) joined by v. The ([z], [y]) entry on
the right is Z céu%, and this must equal Jy,.
k
(iv) < (v). Since A/o C (M))rea always, (iv) implies
AJo = (M)).
Then by 2.2, M satisfies 2.1 (iv). We conclude that M is the set of basic relations
of a cc, and its coherent algebra is A/o. (v) = (iv) is immediate.
(791) < (v). Assuming (iii), A/o has a basis, say
D = {D(),Dl, e 7l)l},
consisting of all (0, 1) matrices which are primitive with respect to the Schur prod-
uct. That is, there are constants c;; such that
Zi e} D]‘ = Oéij D]‘
(see [BCNJ, 2.6; [DGH1]). Clearly M) is primitive, but may not be in A/o. Each
entry of A; is ) for some \. Let A, v be distinct elements of A. If the support of D;
overlaps the support of both My and M,,, then we have a contradiction: ,ug\ = uy
for all 7, and then A = v. Thus the support of D; is contained in the support of
M, for some A. On the other hand, we claim for each nonzero entry of M, the
corresponding entry must be nonzero in D;, for some j. This follows because for
a nonzero entry in My, the corresponding entry is nonzero also in A; for some i,
and D is a basis for A/o. We have M) = Z Dj, where the sum is taken over j in
some subset of {0,...,l}. But then M) € A/o, and since

Zi o M)\ = M?M)\v
we find M € D. Finally, M spans A/o, so M = D.
Now, the fact that M is a basis for A/o means that for some constants p3,,,
My-M, =Y Py M,
TEA

hence (iv) of 2.1 is satisfied by M. By 3.1 and 3.2, (i)—(iii) are also satisfied. We
have shown these are the basic relations for a cc, and its coherent algebra is A/o.
(v) = (41%) is immediate. O

Remark. My = Z ¢} A; does not define the constants ¢} uniquely, unless 7 = d.

2
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5. EXAMPLE

This family of examples is based on [DGH3, Example 4.1]. Let A be a cc
derived as follows from two symmetric (v, k, A)-designs, say D1, Ds, with the same
point set P. The vertex set is the disjoint union of P x P (type 1 vertices) and
{By x By | B; is a block of D;, (i =1,2)} (type 2).

Two vertices of type 1 are equal, adjacent or non-adjacent, where adjacency is
defined as having one coordinate in common. Number these colors of the cc 0, 1
and 2 respectively. The fiber of A with type 1 vertices is a symmetric, rank 3 cc,
equivalent to a strongly regular graph Lo(v?).

The fiber with type 2 vertices is defined similarly, and we number the equality,
adjacency, and non-adjacency colors 3, 4, and 5 respectively.

A type 1 vertex (Py, P») is incident with, adherent to, or separated from a vertex
By x By of type 2. Number these relations 6, 7, 8 respectively. Incidence is defined
in the obvious way. Adherent means exactly one of P; and P is contained in the
corresponding block. Separated means that P; is not contained in B; (i = 1,2).
Let 9 =6*, 10 = 7%, 11 = 8*.

A is an example of a strongly regular design of the second kind ([DGH3]). We
now define an equitable partition o of the vertex set of A. Partition both types of
vertices by first coordinate. The cells of ¢ are then cliques in the lattice graphs.

The multisets are:

(1) Between two cells of type 1: Ao := {0}, 1v=1} Ny := {11, 2v~1}
(2) Between two cells of type 2: g := {31,471} N3:={4! 571}
(3) Between type 1 and type 2: A4 := {6F,7°7F} A5 = {7F,8v=F}
(4) ¢ := A}, A7 = AL

. . 2 2 . . .
It can easily be seen that A/c is a cc of type [ } . It is essentially equivalent

2
to the original pair of symmetric designs.

6. PARAMETERS

Let A/o be a quotient cc with relations given by multisets and notation as in
4.1. In particular, fix a set of constants cg. If k joins vertices of type a to vertices
of type 3, put v := pg;.. Similarly, for each multiset A, define vy := p%,.. To
determine vy, we count vy and apply 4.1 (i). That is,

2 : A
VE = U -
A

Writing v = [vg, v1, ... ,v4]” and T = [vr,,Uxs--. ,0x,]" we have v = Mv. Multi-
plying both sides by C' implies

]T

vy = Zcﬁvk. (6.1)
k
The parameters p3,, are defined by the products

MM, =Y 53, M.

Then 75, is of course the number of cells [z] with [z] joined by A to [z] and [z] by
v to [y], where ([z],[y]) is any ordered pair joined by 7. These are related to the
given cc parameters and the multiset constants as follows.
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Lemma 6.2.
— k
Pag = e upph;
1,5,k

Proof. Given [z] joined to [y] by 7, count all i-j paths from z; € [z] to [y]. First,
pfj counts i-j paths from x; to some y; € [y]. Including all possibilities for y; € [y],

we get
> uipl-
k

On the other hand, we may count i-j paths through [z] for all possible [z]. This
gives

> BRoni

AV
Equating these, we then make use of C' to solve for p},,.

> uiply = Brosi
k AV

Multiply both sides by ¢ and sum over <.

> e (Z u%pi%) =D PR
i k

D7)

k — A
S et = Y5 (z cm) p
ik A\ A

k _
D et uipl; = Drubarny
i,k A,

Now multiply by cf and sum over j.

el R N _ —T g
Do\ Doetuinl | =D P Yy cuy
J i,k v J
k _
Y et uipl = Pruds
1,5,k v
k _

chc?ﬂzpijngﬁ O
1,5,k

The fact that A/o is Schur-closed implies

A A kA
Hi Hg :Zcijﬂk
k
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where the cfj are constants independent of \. Indeed,

A

We have shown

(1)

2)

[BCN]
[(BI]
(GM]
[DGHI]

[DGH2]
[DGH3]

=Yy
Ak
=D WM,
T,\,k
pru =y where oy = ppfel. (6.3)
k v

7. REMARKS

The standard partition X is itself an equitable partition, since the number
of i-arcs from a vertex of type a to a cell of type 3 is p%. - p! 5- The quotient
modulo ¥ is a trivial cc with 1-point fibers.

The number of fibers in a quotient is the same as in the original cc. In
particular, a cc affords a quotient which is an association scheme only if it
is homogeneous (possibly non-commutative). The quotient is commutative
iff for all mulitsets T

ZUZPZ = ZHIZP;% (0<4,j<d).
k k

This occurs iff the number of i-j paths from z; € [z] to [y] equals the
number of j-i¢ paths.
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