
QUOTIENTS OF COHERENT CONFIGURATIONS

A. D. Sankey

Abstract. A result of C. D. Godsil and W. J. Martin ([GM]) gives conditions
under which a partition of the vertex set of an association scheme induces a quotient

association scheme. This work extends that result to coherent configurations. We

provide a concrete description of the basic relations of the quotient scheme, and
a characterization of its parameters. Equivalent conditions to those in [GM] are

determined.

1. Introduction

The standard approach to quotient association schemes is to find, within an im-
primitive association scheme, a subset of the basic relations or colors which forms
an equivalence relation. This determines a partition of the vertex set, and also
induces a partition of the colors. The quotient scheme then has equivalence classes
of vertices as points, and equivalence classes of colors as its basic relations ([BCN],
[BI]). This technique is also applied in the more general settings of coherent con-
figurations, semi-coherent configurations, and relation schemes ([DGH1], [DGH2]).

Quotients in the sense of Godsil and Martin ([GM]) are not necessarily derived
from equivalence relations on colors. That is, examples exist in which two points
in the same cell of a vertex partition are i-related, and two points in different cells
are i-related as well. What distinguishes the basic relations in the quotient scheme,
then, is not a particular subset or equivalence class of colors, but rather a multiset.
For example, cells [x] and [y] may be joined by 3 i-arcs, 5 j-arcs and 2 k-arcs, while
[x] is joined to [z] by 3 i’s, 4 j’s and 3 k’s.

The supposition of an equitable partition σ of the vertex set is the condition that
ensures these multisets are well-defined: the multiset of colors from x1 ∈ [x] to
[y] does not depend on the choice of x1. In [GM], further assumptions that i) σ
has pairwise isometric cells; and ii) cells of σ are simple imply that the quotient
algebra modulo σ is the Bose-Mesner algebra of an association scheme. We show
the multisets are the basic relations for this quotient scheme, and extend this to
the setting of coherent configurations.

In section 2 we give some necessary definitions and notational conventions. The
multisets are defined in section 3, and the isometric and simple properties are
discussed in this context. Section 4 includes equivalent conditions to those in [GM],
under which a quotient is coherent. The parameters of such a quotient scheme are
described in section 5.
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2. Preliminaries

For basic definitions and facts about coherent configurations, the reader is re-
ferred to [DGH1]. One version of the defining axioms is given below for reference.
Let A be a coherent configuration (cc) with vertex set X and basic relations given
by matrices A0, A1, . . . , Ad. These (0, 1) matrices satisfy:

2.1.
(i)
∑
i∈Ω

Ai = I for some Ω ⊆ {0, . . . , d},

(ii)
d∑

i=0

Ai = J ,

(iii) AT
i = Ai∗ , i∗ ∈ {0, . . . , d}

(iv) Ai ·Aj =
d∑

i=0

pk
ijAk.

The coherent algebra 〈Ai〉i=0,... ,d, where the span is over C, will be denoted A. The
term color will be used interchangeably with relation. We will say the color i joins
a vertex x to a vertex y if x is i-related to y.

Condition 2.1 (i) determines the standard partition Σ of the vertices into types:
x ∈ X has type i if x is i-related to itself.

Let σ be a partition of the vertex set X. Write [x] for the cell of σ containing
x. We say σ is equitable if for any ordered pair of cells ([x], [y]) and for any color
i, the number of i-arcs starting at x1 ∈ [x] and ending in [y] is independent of the
choice of x1 ∈ [x]. (It follows that the number starting in [y] and ending at x1 is
also fixed.)

An equitable partition σ of X is necessarily a refinement of Σ. That is, if x has
type i and y has type j 6= i, then x and y must be in different cells of σ because
the number of i-arcs from x to [x] is 1 and the number from y to [x] is 0. In fact,
σ induces an equitable partition on each cell of Σ. We say a cell of σ has type i if
the vertices within that cell have type i.

Suppose σ is an equitable partition of X and let r = |σ|. Let Ai denote the r by
r matrix with rows and columns indexed by the cells of σ, and ([x], [y]) entry equal
to the number of i-arcs from x1 ∈ [x] to [y].

The product Ai · Aj has ([x], [y]) entry equal to the number of i-j paths from
x1 ∈ [x] to [y]. But this is just pk

ij , counted for each k-arc joining x1 to [y] and for
each k. Thus

Ai ·Aj =
d∑

k=0

pk
ijAk (2.2)

and A/σ :=
〈
Ai

〉
0≤i≤d

is closed under multiplication. Note that commutativity
(symmetry) of A implies that of A/σ.

The main result of [GM] answers the question of when the algebra A/σ is itself
the Bose-Mesner algebra of an association scheme.

3. Multisets

Another way to characterize this situation is to define the multiset joining [x] to
[y]. Let

λ := {0µλ
0 , 1µλ

1 , . . . , dµλ
d }
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where µλ
i is the number of i-arcs joining x1 ∈ [x] to [y]. The assumption that σ

is an equitable partition means that these multisets are well-defined. Observe that
the µλ

i are precisely the distinct entries of Ai.
Now for each multiset λ, let Mλ be the matrix with rows and columns indexed

by the cells of σ and ([x], [y]) entry equal to 1 if λ is the multiset joining [x] to [y],
0 otherwise. Let Λ be the set of distinct multisets. Mλ is related to the Ai by:

Ai =
∑
λ∈Λ

µλ
i Mλ.

Put M = {Mλ}λ∈Λ. It will turn out, in the case that A/σ is the coherent algebra
of a cc, that Λ is the set of basic relations.

Suppose λ is the multiset joining a cell [x] to itself. Then λ contains exactly
one element of Ω, hence λ does not join any two distinct cells. There is therefore a
unique subset Λ0 of Λ such that ∑

λ∈Λ0

Mλ = I.

We have also, by definition, ∑
λ∈Λ

Mλ = J.

We have shown

Lemma 3.1. M satisfies (i) and (ii) of 2.1.

We shall see that 2.1 (iii) is satisfied if the cells of σ with the same type are
pairwise isometric and (iv) is satisfied if the cells are simple. These two conditions
are important in [GM] and are defined below in the terminology of multisets.

Given λ ∈ Λ, Mλ induces a digraph on the cells of σ, defined as follows. Make
[x] adjacent to [y] iff λ joins [x] to [y]. We say two cells [x] and [y] of σ are isometric
if for all λ, the out-degree of [x] in this induced digraph is the same as that of [y].
Observe that isometric cells must be cells of the same type, or like cells. Isometric
cells, in other words, look the same locally.

Lemma 3.2. If like cells of σ are pairwise isometric then M satisfies 2.1 (iii).

Proof. We show first that isometric, like cells of σ have the same size. Let [x] and
[y] be two such cells. Then [x] is joined to itself by some multiset, say λ, and [y]
likewise. Now |λ| is the number of points in [x], and also the number of points in
[y].

Next, we claim Λ inherits a pairing from the pairing on the colors of A. That is,
if

(Ai)T = Ai∗ (0 ≤ i ≤ d)

then we define λ∗ as follows. Let hα denote the size of a cell of σ of type α. Suppose
λ joins a cell [x] of type α to a cell [y] of type β. Put

µλ∗

i∗ :=
hα

hβ
µλ

i .
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We show λ∗ is the multiset joining [y] to [x]. The total number of i-arcs originating
in [x] and ending in [y] is ∣∣[x]

∣∣ · µλ
i .

By reversing arcs, this equals the total number of i∗-arcs from [y] to [x]. So∣∣[x]
∣∣ · µλ

i =
∣∣[y]
∣∣ · (# i∗-arcs joining y1 ∈ [y] to [x])

which shows λ∗ is the multiset joining [y] to [x]. Therefore,

MT
λ = Mλ∗ . �

The second condition requires the notion of an induced partition. For our pur-
poses, this will always be induced from a cell of σ, but this is not necessary in the
definition. Let [z] be a cell of σ, and write e[z] for the characteristic vector of [z]
with respect to the underlying set of cells of σ. This is an r by 1 column vector
with a single nonzero entry. (Note this differs from [GM].) Now form

D([z]) :=
〈
Ai · e[z]

〉
0≤i≤d

and define π = π[z], the partition of the cells of σ induced by [z], as follows. Put [x]
and [y] in the same cell of π if and only if every element in D([z]) agrees in these
two entries.

We call [z] a simple cell if the dimension of D([z]) is equal to the number of cells
in π[z]. It is pointed out in [GM] that [z] is simple ⇔ D([z]) is closed under multi-
plication and contains the constants ⇔ D([z]) equals the span of the characteristic
vectors for the cells of π. Since D([z]) is always contained in this span, the third
statement above really means that D([z]) contains the characteristic vectors of cells
of π.

The colors of a cc are confined to one block of the color matrix. That is, each color
relates vertices of one fixed type to vertices of another fixed type. A consequence
of this is that the multisets are disjoint unless they join pairs of cells of the same
types. Let Λi be the subset of Λ containing all multisets joining to cells of type i.

Then Λ =
·⋃

i∈Ω

Λi defines a partition of Λ.

Let [z] be a cell of σ of type i.

Lemma 3.3. There is a one-to-one correspondence between the set of cells of π[z]

and the set Λi.

Proof. We claim cells [x] and [y] are joined to [z] by the same multiset iff they are
in the same cell of π[z]. Entry [x] of Ai · e[z] is equal to the number of i-arcs joining
x1 ∈ [x] to [z]. If [x] and [y] have identical entries for all i, then they are joined by
the same multiset to [z]. Conversely, if joined by the same multiset, the entries in
Ai · e[z] match, so [x] and [y] are in the same cell of π. �

Observe that the characteristic vector for a cell of π[z] is the [z]-column of Mλ

for some λ ∈ Λ. (The multiset determined by the bijection above.) This shows:

Cor. 3.4. [z] is simple iff D([z]) contains column [z] of Mλ, for all λ.
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4. Quotient coherent configurations

In the theorem below, Mλ, Ai and A/σ are defined as in previous sections. Fix
an ordering of Λ, let r = |Λ| and define the d + 1 by r + 1 matrix M by

Mij := µ
λj

i (0 ≤ i ≤ d, 0 ≤ j ≤ r).

(Row i of M gives the coefficients of Ai written as a linear combination of the
multiset matrices.) The rows of MT are the same as the distinct rows of the outer
distribution matrix of [z] ([GM], [BCN]).

Theorem 4.1. Let A be a coherent configuration with coherent algebra A, σ an
equitable partition of A with like cells pairwise isometric. Then (i)–(v) below are
equivalent.

(i) M has a left inverse.
(ii) The cells of σ are simple.
(iii) A/σ is a coherent algebra.
(iv) Mλ ∈ A/σ for all λ ∈ Λ.
(v) {Mλ}λ∈Λ is the set of basic relations for a cc whose coherent algebra is A/σ.

Proof.

(i) ⇒ (ii). Let C be a left inverse of M , say

C =
(
cλ
k

)
λ,k

.

Then for all λ, ν ∈ Λ,
d∑

k=0

cλ
kµν

k = δλν .

Let [z] be a cell of σ. With π = π[z] as defined above, we show that the [z]-column
of Mλ is in D([z]), then apply Cor. 3.4. We claim

Mλe[z] =
∑

k

cλ
kAke[z].

The [x] entry of the sum on the right is∑
k

cλ
k · (# k from x1 ∈ [x] to [z])

=
∑

k

cλ
k · µν

k
where ν is the multiset
joining [x] to [z]

=δλν .

Thus the sum on the right is the characteristic vector Mλe[z].

(ii) ⇒ (i). Assuming [z] is simple implies there are constants cλ
k with

Mλe[z] =
∑

k

cλ
kAke[z].

But then
∑

k

cλ
kµν

k = δλν , and the matrix C :=
(
cλ
k

)
λ,k

is a left inverse of M .
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(i) ⇒ (iv). Assume there is a matrix C =
(
cλ
k

)
λ,k

with CM = I. We claim

Mλ =
∑

k

cλ
kAk.

The ([x], [y]) entry on the right is ∑
k

cλ
kµν

k

where ν is the multiset joining [x] to [y]. Since this equals δλν , the sum on the right
is Mλ.

(iv) ⇒ (i). Suppose
Mλ =

∑
k

cλ
kAk.

For each ν ∈ Λ, choose an ordered pair ([x], [y]) joined by ν. The ([x], [y]) entry on
the right is

∑
k

cλ
kµν

k, and this must equal δλν .

(iv) ⇔ (v). Since A/σ ⊆ 〈Mλ〉λ∈Λ always, (iv) implies

A/σ = 〈Mλ〉.
Then by 2.2, M satisfies 2.1 (iv). We conclude that M is the set of basic relations
of a cc, and its coherent algebra is A/σ. (v) ⇒ (iv) is immediate.

(iii) ⇔ (v). Assuming (iii), A/σ has a basis, say

D := {D0, D1, . . . , Dl},
consisting of all (0, 1) matrices which are primitive with respect to the Schur prod-
uct. That is, there are constants αij such that

Ai ◦Dj = αijDj

(see [BCN], 2.6; [DGH1]). Clearly Mλ is primitive, but may not be in A/σ. Each
entry of Ai is µλ

i for some λ. Let λ, ν be distinct elements of Λ. If the support of Dj

overlaps the support of both Mλ and Mν , then we have a contradiction: µλ
i = µν

i

for all i, and then λ = ν. Thus the support of Dj is contained in the support of
Mλ for some λ. On the other hand, we claim for each nonzero entry of Mλ the
corresponding entry must be nonzero in Dj , for some j. This follows because for
a nonzero entry in Mλ, the corresponding entry is nonzero also in Ai for some i,
and D is a basis for A/σ. We have Mλ =

∑
Dj , where the sum is taken over j in

some subset of {0, . . . , l}. But then Mλ ∈ A/σ, and since

Ai ◦Mλ = µλ
i Mλ,

we find Mλ ∈ D. Finally, M spans A/σ, so M = D.
Now, the fact that M is a basis for A/σ means that for some constants pτ

λν ,

Mλ ·Mν =
∑
τ∈Λ

pτ
λνMτ

hence (iv) of 2.1 is satisfied by M. By 3.1 and 3.2, (i)—(iii) are also satisfied. We
have shown these are the basic relations for a cc, and its coherent algebra is A/σ.
(v) ⇒ (iii) is immediate. �

Remark. Mλ =
∑

i

cλ
i Ai does not define the constants cλ

i uniquely, unless r = d.
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5. Example

This family of examples is based on [DGH3, Example 4.1]. Let A be a cc
derived as follows from two symmetric (v, k, λ)-designs, say D1, D2, with the same
point set P . The vertex set is the disjoint union of P × P (type 1 vertices) and
{B1 ×B2 | Bi is a block of Di, (i = 1, 2)} (type 2).

Two vertices of type 1 are equal, adjacent or non-adjacent, where adjacency is
defined as having one coordinate in common. Number these colors of the cc 0, 1
and 2 respectively. The fiber of A with type 1 vertices is a symmetric, rank 3 cc,
equivalent to a strongly regular graph L2(v2).

The fiber with type 2 vertices is defined similarly, and we number the equality,
adjacency, and non-adjacency colors 3, 4, and 5 respectively.

A type 1 vertex (P1, P2) is incident with, adherent to, or separated from a vertex
B1×B2 of type 2. Number these relations 6, 7, 8 respectively. Incidence is defined
in the obvious way. Adherent means exactly one of P1 and P2 is contained in the
corresponding block. Separated means that Pi is not contained in Bi (i = 1, 2).
Let 9 = 6∗, 10 = 7∗, 11 = 8∗.
A is an example of a strongly regular design of the second kind ([DGH3]). We

now define an equitable partition σ of the vertex set of A. Partition both types of
vertices by first coordinate. The cells of σ are then cliques in the lattice graphs.

The multisets are:
(1) Between two cells of type 1: λ0 := {01, 1v−1} λ1 := {11, 2v−1}
(2) Between two cells of type 2: λ2 := {31, 4v−1} λ3 := {41, 5v−1}
(3) Between type 1 and type 2: λ4 := {6k, 7v−k} λ5 := {7k, 8v−k}
(4) λ6 := λ∗4, λ7 := λ∗5.

It can easily be seen that A/σ is a cc of type
[

2 2
2

]
. It is essentially equivalent

to the original pair of symmetric designs.

6. Parameters

Let A/σ be a quotient cc with relations given by multisets and notation as in
4.1. In particular, fix a set of constants cλ

k . If k joins vertices of type α to vertices
of type β, put vk := pα

kk∗ . Similarly, for each multiset λ, define vλ := pα
λλ∗ . To

determine vλ, we count vk and apply 4.1 (i). That is,

vk =
∑

λ

vλµλ
k .

Writing v = [v0, v1, . . . , vd]
T and v = [vλ0 , vλ1 , . . . , vλr

]T we have v = Mv. Multi-
plying both sides by C implies

vλ =
∑

k

cλ
kvk. (6.1)

The parameters pτ
λν are defined by the products

MλMν =
∑

τ

pτ
λνMτ .

Then pτ
λν is of course the number of cells [z] with [x] joined by λ to [z] and [z] by

ν to [y], where ([x], [y]) is any ordered pair joined by τ . These are related to the
given cc parameters and the multiset constants as follows.



8 A. D. SANKEY

Lemma 6.2.
pτ

αβ =
∑
i,j,k

cα
i cβ

j µτ
kpk

ij

Proof. Given [x] joined to [y] by τ , count all i-j paths from x1 ∈ [x] to [y]. First,
pk

ij counts i-j paths from x1 to some y1 ∈ [y]. Including all possibilities for y1 ∈ [y],
we get ∑

k

µτ
kpk

ij .

On the other hand, we may count i-j paths through [z] for all possible [z]. This
gives ∑

λ,ν

pτ
λνµλ

i µν
j .

Equating these, we then make use of C to solve for pτ
λν .∑

k

µτ
kpk

ij =
∑
λ,ν

pτ
λνµλ

i µν
j

Multiply both sides by cα
i and sum over i.

∑
i

cα
i

(∑
k

µτ
kpk

ij

)
=
∑
λ,ν

∑
i

cα
i pτ

λνµλ
i µν

j

∑
i,k

cα
i µτ

kpk
ij =

∑
λ,ν

pτ
λν

(∑
i

cα
i µλ

i

)
µν

j∑
i,k

cα
i µτ

kpk
ij =

∑
λ,ν

pτ
λνδαλµν

j

Now multiply by cβ
j and sum over j.

∑
j

cβ
j

∑
i,k

cα
i µτ

kpk
ij

 =
∑

ν

pτ
αν

∑
j

cβ
j µν

j∑
i,j,k

cα
i cβ

j µτ
kpk

ij =
∑

ν

pτ
ανδβν∑

i,j,k

cα
i cβ

j µτ
kpk

ij = pτ
αβ �

The fact that A/σ is Schur-closed implies

µλ
i µλ

j =
∑

k

ck
ijµ

λ
k
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where the ck
ij are constants independent of λ. Indeed,

Ai ◦Aj =
∑

λ

µλ
i µλ

j Mλ

=
∑
λ,k

µλ
i µλ

j cλ
kAk

=
∑
τ,λ,k

µλ
i µλ

j cλ
kµτ

kMτ

We have shown

µλ
i µλ

j =
∑

k

ck
ijµ

λ
k where ck

ij =
∑

ν

µν
i µν

j cν
k. (6.3)

7. Remarks

(1) The standard partition Σ is itself an equitable partition, since the number
of i-arcs from a vertex of type α to a cell of type β is pα

ii∗ · pi
iβ . The quotient

modulo Σ is a trivial cc with 1-point fibers.
(2) The number of fibers in a quotient is the same as in the original cc. In

particular, a cc affords a quotient which is an association scheme only if it
is homogeneous (possibly non-commutative). The quotient is commutative
iff for all mulitsets τ∑

k

µτ
kpk

ij =
∑

k

µτ
kpk

ji (0 ≤ i, j ≤ d).

This occurs iff the number of i-j paths from x1 ∈ [x] to [y] equals the
number of j-i paths.
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