QUOTIENTS OF COHERENT CONFIGURATIONS

A. D. SANKEY

ABSTRACT. A result of C. D. Godsil and W. J. Martin ([GM]) gives conditions under which a partition of the vertex set of an association scheme induces a quotient association scheme. This work extends that result to coherent configurations. We provide a concrete description of the basic relations of the quotient scheme, and a characterization of its parameters. Equivalent conditions to those in [GM] are determined.

1. INTRODUCTION

The standard approach to quotient association schemes is to find, within an imprimitive association scheme, a subset of the basic relations or colors which forms an equivalence relation. This determines a partition of the vertex set, and also induces a partition of the colors. The quotient scheme then has equivalence classes of vertices as points, and equivalence classes of colors as its basic relations ([BCN], [BI]). This technique is also applied in the more general settings of coherent configurations, semi-coherent configurations, and relation schemes ([DGH1], [DGH2]).

Quotients in the sense of Godsil and Martin ([GM]) are not necessarily derived from equivalence relations on colors. That is, examples exist in which two points in the same cell of a vertex partition are *i*-related, and two points in different cells are *i*-related as well. What distinguishes the basic relations in the quotient scheme, then, is not a particular subset or equivalence class of colors, but rather a multiset. For example, cells [x] and [y] may be joined by 3 *i*-arcs, 5 *j*-arcs and 2 *k*-arcs, while [x] is joined to [z] by 3 *i*'s, 4 *j*'s and 3 *k*'s.

The supposition of an *equitable* partition σ of the vertex set is the condition that ensures these multisets are well-defined: the multiset of colors from $x_1 \in [x]$ to [y] does not depend on the choice of x_1 . In [GM], further assumptions that i) σ has *pairwise isometric* cells; and ii) cells of σ are *simple* imply that the quotient algebra modulo σ is the Bose-Mesner algebra of an association scheme. We show the multisets are the basic relations for this quotient scheme, and extend this to the setting of coherent configurations.

In section 2 we give some necessary definitions and notational conventions. The multisets are defined in section 3, and the isometric and simple properties are discussed in this context. Section 4 includes equivalent conditions to those in [GM], under which a quotient is coherent. The parameters of such a quotient scheme are described in section 5.

Typeset by $\mathcal{A}\!\mathcal{M}\!\mathcal{S}\!\text{-}\!T_{\!E}\!X$

A. D. SANKEY

2. Preliminaries

For basic definitions and facts about coherent configurations, the reader is referred to [DGH1]. One version of the defining axioms is given below for reference. Let \mathcal{A} be a coherent configuration (cc) with vertex set X and basic relations given by matrices A_0, A_1, \ldots, A_d . These (0, 1) matrices satisfy:

2.1.
(i)
$$\sum_{i \in \Omega} A_i = I$$
 for some $\Omega \subseteq \{0, \dots, d\}$,
(ii) $\sum_{i=0}^{d} A_i = J$,
(iii) $A_i^T = A_{i^*}, i^* \in \{0, \dots, d\}$
(iv) $A_i \cdot A_j = \sum_{i=0}^{d} p_{ij}^k A_k$.

i=0

The coherent algebra $\langle A_i \rangle_{i=0,\ldots,d}$, where the span is over \mathbb{C} , will be denoted \mathbb{A} . The term *color* will be used interchangeably with *relation*. We will say the color *i joins* a vertex *x* to a vertex *y* if *x* is *i*-related to *y*.

Condition 2.1 (i) determines the standard partition Σ of the vertices into types: $x \in X$ has type i if x is i-related to itself.

Let σ be a partition of the vertex set X. Write [x] for the cell of σ containing x. We say σ is *equitable* if for any ordered pair of cells ([x], [y]) and for any color i, the number of *i*-arcs starting at $x_1 \in [x]$ and ending in [y] is independent of the choice of $x_1 \in [x]$. (It follows that the number starting in [y] and ending at x_1 is also fixed.)

An equitable partition σ of X is necessarily a refinement of Σ . That is, if x has type i and y has type $j \neq i$, then x and y must be in different cells of σ because the number of *i*-arcs from x to [x] is 1 and the number from y to [x] is 0. In fact, σ induces an equitable partition on each cell of Σ . We say a cell of σ has type *i* if the vertices within that cell have type *i*.

Suppose σ is an equitable partition of X and let $r = |\sigma|$. Let \overline{A}_i denote the r by r matrix with rows and columns indexed by the cells of σ , and ([x], [y]) entry equal to the number of *i*-arcs from $x_1 \in [x]$ to [y].

The product $\overline{A}_i \cdot \overline{A}_j$ has ([x], [y]) entry equal to the number of i-j paths from $x_1 \in [x]$ to [y]. But this is just p_{ij}^k , counted for each k-arc joining x_1 to [y] and for each k. Thus

$$\overline{A}_i \cdot \overline{A}_j = \sum_{k=0}^d p_{ij}^k \overline{A}_k \tag{2.2}$$

and $\mathbb{A}/\sigma := \langle \overline{A}_i \rangle_{0 \le i \le d}$ is closed under multiplication. Note that commutativity (symmetry) of \mathbb{A} implies that of \mathbb{A}/σ .

The main result of [GM] answers the question of when the algebra \mathbb{A}/σ is itself the Bose-Mesner algebra of an association scheme.

3. Multisets

Another way to characterize this situation is to define the multiset joining [x] to [y]. Let

$$\lambda := \{0^{\mu_0^{\lambda}}, 1^{\mu_1^{\lambda}}, \dots, d^{\mu_d^{\lambda}}\}$$

where μ_i^{λ} is the number of *i*-arcs joining $x_1 \in [x]$ to [y]. The assumption that σ is an equitable partition means that these multisets are well-defined. Observe that the μ_i^{λ} are precisely the distinct entries of \overline{A}_i .

Now for each multiset λ , let M_{λ} be the matrix with rows and columns indexed by the cells of σ and ([x], [y]) entry equal to 1 if λ is the multiset joining [x] to [y], 0 otherwise. Let Λ be the set of distinct multisets. M_{λ} is related to the \overline{A}_i by:

$$\overline{A}_i = \sum_{\lambda \in \Lambda} \mu_i^{\lambda} M_{\lambda}.$$

Put $\mathcal{M} = \{M_{\lambda}\}_{\lambda \in \Lambda}$. It will turn out, in the case that \mathbb{A}/σ is the coherent algebra of a cc, that Λ is the set of basic relations.

Suppose λ is the multiset joining a cell [x] to itself. Then λ contains exactly one element of Ω , hence λ does not join any two distinct cells. There is therefore a unique subset Λ_0 of Λ such that

$$\sum_{\lambda \in \Lambda_0} M_{\lambda} = I.$$

We have also, by definition,

$$\sum_{\lambda \in \Lambda} M_{\lambda} = J.$$

We have shown

Lemma 3.1. \mathcal{M} satisfies (i) and (ii) of 2.1.

We shall see that 2.1 (iii) is satisfied if the cells of σ with the same type are *pairwise isometric* and (iv) is satisfied if the cells are *simple*. These two conditions are important in [GM] and are defined below in the terminology of multisets.

Given $\lambda \in \Lambda$, M_{λ} induces a digraph on the cells of σ , defined as follows. Make [x] adjacent to [y] iff λ joins [x] to [y]. We say two cells [x] and [y] of σ are *isometric* if for all λ , the out-degree of [x] in this induced digraph is the same as that of [y]. Observe that isometric cells must be cells of the same type, or *like cells*. Isometric cells, in other words, look the same locally.

Lemma 3.2. If like cells of σ are pairwise isometric then \mathcal{M} satisfies 2.1 (iii).

Proof. We show first that isometric, like cells of σ have the same size. Let [x] and [y] be two such cells. Then [x] is joined to itself by some multiset, say λ , and [y] likewise. Now $|\lambda|$ is the number of points in [x], and also the number of points in [y].

Next, we claim Λ inherits a pairing from the pairing on the colors of \mathcal{A} . That is, if

$$(A_i)^T = A_{i^*} \quad (0 \le i \le d)$$

then we define λ^* as follows. Let h_{α} denote the size of a cell of σ of type α . Suppose λ joins a cell [x] of type α to a cell [y] of type β . Put

$$\mu_{i^*}^{\lambda^*} := \frac{h_\alpha}{h_\beta} \mu_i^{\lambda}.$$

We show λ^* is the multiset joining [y] to [x]. The total number of *i*-arcs originating in [x] and ending in [y] is

$$|[x]| \cdot \mu_i^{\lambda}.$$

By reversing arcs, this equals the total number of i^* -arcs from [y] to [x]. So

$$|[x]| \cdot \mu_i^{\lambda} = |[y]| \cdot (\# i^* \text{-arcs joining } y_1 \in [y] \text{ to } [x])$$

which shows λ^* is the multiset joining [y] to [x]. Therefore,

$$M_{\lambda}^T = M_{\lambda^*}.$$

The second condition requires the notion of an induced partition. For our purposes, this will always be induced from a cell of σ , but this is not necessary in the definition. Let [z] be a cell of σ , and write $e_{[z]}$ for the characteristic vector of [z] with respect to the underlying set of cells of σ . This is an r by 1 column vector with a single nonzero entry. (Note this differs from [GM].) Now form

$$\mathcal{D}([z]) := \left\langle \overline{A}_i \cdot e_{[z]} \right\rangle_{0 \le i \le d}$$

and define $\pi = \pi_{[z]}$, the partition of the cells of σ induced by [z], as follows. Put [x] and [y] in the same cell of π if and only if every element in $\mathcal{D}([z])$ agrees in these two entries.

We call [z] a simple cell if the dimension of $\mathcal{D}([z])$ is equal to the number of cells in $\pi_{[z]}$. It is pointed out in [GM] that [z] is simple $\Leftrightarrow \mathcal{D}([z])$ is closed under multiplication and contains the constants $\Leftrightarrow \mathcal{D}([z])$ equals the span of the characteristic vectors for the cells of π . Since $\mathcal{D}([z])$ is always contained in this span, the third statement above really means that $\mathcal{D}([z])$ contains the characteristic vectors of cells of π .

The colors of a cc are confined to one block of the color matrix. That is, each color relates vertices of one fixed type to vertices of another fixed type. A consequence of this is that the multisets are disjoint unless they join pairs of cells of the same types. Let Λ_i be the subset of Λ containing all multisets joining to cells of type i.

Then $\Lambda = \bigcup_{i \in \Omega} \Lambda_i$ defines a partition of Λ . Let [z] be a cell of σ of type i.

Lemma 3.3. There is a one-to-one correspondence between the set of cells of $\pi_{[z]}$ and the set Λ_i .

Proof. We claim cells [x] and [y] are joined to [z] by the same multiset iff they are in the same cell of $\pi_{[z]}$. Entry [x] of $\overline{A}_i \cdot e_{[z]}$ is equal to the number of *i*-arcs joining $x_1 \in [x]$ to [z]. If [x] and [y] have identical entries for all *i*, then they are joined by the same multiset to [z]. Conversely, if joined by the same multiset, the entries in $\overline{A}_i \cdot e_{[z]}$ match, so [x] and [y] are in the same cell of π . \Box

Observe that the characteristic vector for a cell of $\pi_{[z]}$ is the [z]-column of M_{λ} for some $\lambda \in \Lambda$. (The multiset determined by the bijection above.) This shows:

Cor. 3.4. [z] is simple iff $\mathcal{D}([z])$ contains column [z] of M_{λ} , for all λ .

QUOTIENTS OF CC'S

4. QUOTIENT COHERENT CONFIGURATIONS

In the theorem below, M_{λ} , \overline{A}_i and \mathbb{A}/σ are defined as in previous sections. Fix an ordering of Λ , let $r = |\Lambda|$ and define the d + 1 by r + 1 matrix M by

$$M_{ij} := \mu_i^{\lambda_j} \quad (0 \le i \le d, \ 0 \le j \le r).$$

(Row *i* of *M* gives the coefficients of \overline{A}_i written as a linear combination of the multiset matrices.) The rows of M^T are the same as the distinct rows of the outer distribution matrix of [z] ([GM], [BCN]).

Theorem 4.1. Let \mathcal{A} be a coherent configuration with coherent algebra \mathbb{A} , σ an equitable partition of \mathcal{A} with like cells pairwise isometric. Then (i)-(v) below are equivalent.

- (i) M has a left inverse.
- (ii) The cells of σ are simple.
- (iii) \mathbb{A}/σ is a coherent algebra.
- (iv) $M_{\lambda} \in \mathbb{A}/\sigma$ for all $\lambda \in \Lambda$.
- (v) $\{M_{\lambda}\}_{\lambda \in \Lambda}$ is the set of basic relations for a cc whose coherent algebra is \mathbb{A}/σ .

Proof.

 $(i) \Rightarrow (ii)$. Let C be a left inverse of M, say

$$C = \left(c_k^\lambda\right)_{\lambda,k}$$

Then for all $\lambda, \nu \in \Lambda$,

$$\sum_{k=0}^{d} c_k^{\lambda} \mu_k^{\nu} = \delta_{\lambda\nu}.$$

Let [z] be a cell of σ . With $\pi = \pi_{[z]}$ as defined above, we show that the [z]-column of M_{λ} is in $\mathcal{D}([z])$, then apply Cor. 3.4. We claim

$$M_{\lambda}e_{[z]} = \sum_{k} c_{k}^{\lambda} \overline{A}_{k} e_{[z]}$$

The [x] entry of the sum on the right is

$$\sum_{k} c_{k}^{\lambda} \cdot (\# \ k \ \text{from} \ x_{1} \in [x] \ \text{to} \ [z])$$
$$= \sum_{k} c_{k}^{\lambda} \cdot \mu_{k}^{\nu} \qquad \text{where } \nu \ \text{is the multiset}$$
$$= \delta_{\lambda\nu}.$$

Thus the sum on the right is the characteristic vector $M_{\lambda}e_{[z]}$. (*ii*) \Rightarrow (*i*). Assuming [z] is simple implies there are constants c_k^{λ} with

$$M_{\lambda}e_{[z]} = \sum_{k} c_{k}^{\lambda} \overline{A}_{k} e_{[z]}.$$

But then $\sum_{k} c_{k}^{\lambda} \mu_{k}^{\nu} = \delta_{\lambda\nu}$, and the matrix $C := (c_{k}^{\lambda})_{\lambda,k}$ is a left inverse of M.

 $(i) \Rightarrow (iv)$. Assume there is a matrix $C = (c_k^{\lambda})_{\lambda,k}$ with CM = I. We claim

$$M_{\lambda} = \sum_{k} c_{k}^{\lambda} \overline{A}_{k}.$$

The ([x], [y]) entry on the right is

$$\sum_k c_k^\lambda \mu_k^\nu$$

where ν is the multiset joining [x] to [y]. Since this equals $\delta_{\lambda\nu}$, the sum on the right is M_{λ} .

 $(iv) \Rightarrow (i)$. Suppose

$$M_{\lambda} = \sum_{k} c_{k}^{\lambda} \overline{A}_{k}.$$

For each $\nu \in \Lambda$, choose an ordered pair ([x], [y]) joined by ν . The ([x], [y]) entry on the right is $\sum_{\nu} c_k^{\lambda} \mu_k^{\nu}$, and this must equal $\delta_{\lambda\nu}$.

 $(iv) \Leftrightarrow (v)$. Since $\mathbb{A}/\sigma \subseteq \langle M_{\lambda} \rangle_{\lambda \in \Lambda}$ always, (iv) implies $\mathbb{A}/\sigma = \langle M_{\lambda} \rangle.$

Then by 2.2, \mathcal{M} satisfies 2.1 (iv). We conclude that \mathcal{M} is the set of basic relations of a cc, and its coherent algebra is \mathbb{A}/σ . $(v) \Rightarrow (iv)$ is immediate.

 $(iii) \Leftrightarrow (v)$. Assuming (iii), \mathbb{A}/σ has a basis, say

$$D:=\{D_0, D_1, \ldots, D_l\},\$$

consisting of all (0, 1) matrices which are primitive with respect to the Schur product. That is, there are constants α_{ij} such that

$$\overline{A}_i \circ D_j = \alpha_{ij} D_j$$

(see [BCN], 2.6; [DGH1]). Clearly M_{λ} is primitive, but may not be in \mathbb{A}/σ . Each entry of \overline{A}_i is μ_i^{λ} for some λ . Let λ, ν be distinct elements of Λ . If the support of D_j overlaps the support of both M_{λ} and M_{ν} , then we have a contradiction: $\mu_i^{\lambda} = \mu_i^{\nu}$ for all i, and then $\lambda = \nu$. Thus the support of D_j is contained in the support of M_{λ} for some λ . On the other hand, we claim for each nonzero entry of M_{λ} the corresponding entry must be nonzero in D_j , for some j. This follows because for a nonzero entry in M_{λ} , the corresponding entry is nonzero also in \overline{A}_i for some i, and D is a basis for \mathbb{A}/σ . We have $M_{\lambda} = \sum D_j$, where the sum is taken over j in some subset of $\{0, \ldots, l\}$. But then $M_{\lambda} \in \mathbb{A}/\sigma$, and since

$$\overline{A}_i \circ M_\lambda = \mu_i^\lambda M_\lambda,$$

we find $\mathcal{M}_{\lambda} \in D$. Finally, \mathcal{M} spans \mathbb{A}/σ , so $\mathcal{M} = D$.

Now, the fact that \mathcal{M} is a basis for \mathbb{A}/σ means that for some constants $\overline{p}_{\lambda\nu}^{\tau}$,

$$M_{\lambda} \cdot M_{\nu} = \sum_{\tau \in \Lambda} \overline{p}_{\lambda\nu}^{\tau} M_{\tau}$$

hence (iv) of 2.1 is satisfied by \mathcal{M} . By 3.1 and 3.2, (i)—(iii) are also satisfied. We have shown these are the basic relations for a cc, and its coherent algebra is \mathbb{A}/σ . $(v) \Rightarrow (iii)$ is immediate. \Box

Remark. $M_{\lambda} = \sum_{i} c_{i}^{\lambda} \overline{A}_{i}$ does not define the constants c_{i}^{λ} uniquely, unless r = d.

5. Example

This family of examples is based on [DGH3, Example 4.1]. Let \mathcal{A} be a cc derived as follows from two symmetric (v, k, λ) -designs, say $\mathcal{D}_1, \mathcal{D}_2$, with the same point set P. The vertex set is the disjoint union of $P \times P$ (type 1 vertices) and $\{B_1 \times B_2 \mid B_i \text{ is a block of } D_i, (i = 1, 2)\}$ (type 2).

Two vertices of type 1 are equal, adjacent or non-adjacent, where adjacency is defined as having one coordinate in common. Number these colors of the cc 0, 1 and 2 respectively. The fiber of \mathcal{A} with type 1 vertices is a symmetric, rank 3 cc, equivalent to a strongly regular graph $L_2(v^2)$.

The fiber with type 2 vertices is defined similarly, and we number the equality, adjacency, and non-adjacency colors 3, 4, and 5 respectively.

A type 1 vertex (P_1, P_2) is incident with, adherent to, or separated from a vertex $B_1 \times B_2$ of type 2. Number these relations 6, 7, 8 respectively. Incidence is defined in the obvious way. Adherent means exactly one of P_1 and P_2 is contained in the corresponding block. Separated means that P_i is not contained in B_i (i = 1, 2). Let $9 = 6^*$, $10 = 7^*$, $11 = 8^*$.

 \mathcal{A} is an example of a strongly regular design of the second kind ([DGH3]). We now define an equitable partition σ of the vertex set of \mathcal{A} . Partition both types of vertices by first coordinate. The cells of σ are then cliques in the lattice graphs. The multisets are:

- (1) Between two cells of type 1: $\lambda_0 := \{0^1, 1^{v-1}\}$ $\lambda_1 := \{1^1, 2^{v-1}\}$ (2) Between two cells of type 2: $\lambda_2 := \{3^1, 4^{v-1}\}$ $\lambda_3 := \{4^1, 5^{v-1}\}$ (3) Between type 1 and type 2: $\lambda_4 := \{6^k, 7^{v-k}\}$ $\lambda_5 := \{7^k, 8^{v-k}\}$
- (4) $\lambda_6 := \lambda_4^*, \qquad \lambda_7 := \lambda_5^*.$

It can easily be seen that \mathcal{A}/σ is a cc of type $\begin{bmatrix} 2 & 2\\ & 2 \end{bmatrix}$. It is essentially equivalent to the original pair of symmetric designs.

6. PARAMETERS

Let \mathcal{A}/σ be a quotient cc with relations given by multisets and notation as in 4.1. In particular, fix a set of constants c_k^{λ} . If k joins vertices of type α to vertices of type β , put $v_k := p_{kk^*}^{\alpha}$. Similarly, for each multiset λ , define $v_{\lambda} := \overline{p}_{\lambda\lambda^*}^{\alpha}$. To determine v_{λ} , we count v_k and apply 4.1 (i). That is,

$$v_k = \sum_{\lambda} v_{\lambda} \mu_k^{\lambda}.$$

Writing $v = [v_0, v_1, \ldots, v_d]^T$ and $\overline{v} = [v_{\lambda_0}, v_{\lambda_1}, \ldots, v_{\lambda_r}]^T$ we have $v = M\overline{v}$. Multiplying both sides by C implies

$$v_{\lambda} = \sum_{k} c_{k}^{\lambda} v_{k}. \tag{6.1}$$

The parameters $\overline{p}_{\lambda\nu}^{\tau}$ are defined by the products

$$M_{\lambda}M_{\nu} = \sum_{\tau} \overline{p}_{\lambda\nu}^{\tau} M_{\tau}.$$

Then $\overline{p}_{\lambda\nu}^{\tau}$ is of course the number of cells [z] with [x] joined by λ to [z] and [z] by ν to [y], where ([x], [y]) is any ordered pair joined by τ . These are related to the given cc parameters and the multiset constants as follows.

Lemma 6.2.

$$\overline{p}_{\alpha\beta}^{\tau} = \sum_{i,j,k} c_i^{\alpha} c_j^{\beta} \mu_k^{\tau} p_{ij}^k$$

Proof. Given [x] joined to [y] by τ , count all *i*-*j* paths from $x_1 \in [x]$ to [y]. First, p_{ij}^k counts *i*-*j* paths from x_1 to some $y_1 \in [y]$. Including all possibilities for $y_1 \in [y]$, we get

$$\sum_k \mu_k^\tau p_{ij}^k.$$

On the other hand, we may count i-j paths through [z] for all possible [z]. This gives

$$\sum_{\lambda,\nu} \overline{p}^{\tau}_{\lambda\nu} \mu_i^{\lambda} \mu_j^{\nu}.$$

Equating these, we then make use of C to solve for $\bar{p}_{\lambda\nu}^{\tau}$.

$$\sum_{k} \mu_{k}^{\tau} p_{ij}^{k} = \sum_{\lambda,\nu} \overline{p}_{\lambda\nu}^{\tau} \mu_{i}^{\lambda} \mu_{j}^{\nu}$$

Multiply both sides by c_i^{α} and sum over i.

$$\sum_{i} c_{i}^{\alpha} \left(\sum_{k} \mu_{k}^{\tau} p_{ij}^{k} \right) = \sum_{\lambda,\nu} \sum_{i} c_{i}^{\alpha} \overline{p}_{\lambda\nu}^{\tau} \mu_{i}^{\lambda} \mu_{j}^{\nu}$$
$$\sum_{i,k} c_{i}^{\alpha} \mu_{k}^{\tau} p_{ij}^{k} = \sum_{\lambda,\nu} \overline{p}_{\lambda\nu}^{\tau} \left(\sum_{i} c_{i}^{\alpha} \mu_{i}^{\lambda} \right) \mu_{j}^{\nu}$$
$$\sum_{i,k} c_{i}^{\alpha} \mu_{k}^{\tau} p_{ij}^{k} = \sum_{\lambda,\nu} \overline{p}_{\lambda\nu}^{\tau} \delta_{\alpha\lambda} \mu_{j}^{\nu}$$

Now multiply by c_j^β and sum over j.

$$\begin{split} \sum_{j} c_{j}^{\beta} \left(\sum_{i,k} c_{i}^{\alpha} \mu_{k}^{\tau} p_{ij}^{k} \right) &= \sum_{\nu} \overline{p}_{\alpha\nu}^{\tau} \sum_{j} c_{j}^{\beta} \mu_{j}^{\nu} \\ \sum_{i,j,k} c_{i}^{\alpha} c_{j}^{\beta} \mu_{k}^{\tau} p_{ij}^{k} &= \sum_{\nu} \overline{p}_{\alpha\nu}^{\tau} \delta_{\beta\nu} \\ \sum_{i,j,k} c_{i}^{\alpha} c_{j}^{\beta} \mu_{k}^{\tau} p_{ij}^{k} &= \overline{p}_{\alpha\beta}^{\tau} \quad \Box \end{split}$$

The fact that \mathbb{A}/σ is Schur-closed implies

$$\mu_i^\lambda \mu_j^\lambda = \sum_k c_{ij}^k \mu_k^\lambda$$

8

where the c_{ij}^k are constants independent of λ . Indeed,

$$ar{A}_i \circ \overline{A}_j = \sum_{\lambda} \mu_i^{\lambda} \mu_j^{\lambda} M_{\lambda}$$

 $= \sum_{\lambda,k} \mu_i^{\lambda} \mu_j^{\lambda} c_k^{\lambda} \overline{A}_k$
 $= \sum_{ au,\lambda,k} \mu_i^{\lambda} \mu_j^{\lambda} c_k^{\lambda} \mu_k^{ au} M_{ au}$

We have shown

$$\mu_i^{\lambda}\mu_j^{\lambda} = \sum_k c_{ij}^k \mu_k^{\lambda} \quad \text{where} \quad c_{ij}^k = \sum_{\nu} \mu_i^{\nu} \mu_j^{\nu} c_k^{\nu}. \tag{6.3}$$

7. Remarks

- (1) The standard partition Σ is itself an equitable partition, since the number of *i*-arcs from a vertex of type α to a cell of type β is $p_{ii^*}^{\alpha} \cdot p_{i\beta}^i$. The quotient modulo Σ is a trivial cc with 1-point fibers.
- (2) The number of fibers in a quotient is the same as in the original cc. In particular, a cc affords a quotient which is an association scheme only if it is homogeneous (possibly non-commutative). The quotient is commutative iff for all multisets τ

$$\sum_k \mu_k^\tau p_{ij}^k = \sum_k \mu_k^\tau p_{ji}^k \quad (0 \le i, j \le d).$$

This occurs iff the number of i-j paths from $x_1 \in [x]$ to [y] equals the number of j-i paths.

References

- [BCN] A. E. Brouwer, A. M. Cohen, and A. Neumaier, "Distance Regular Graphs", Springer-Verlag, Berlin, 1989.
- [BI] E. Bannai and T. Ito, "Algebraic Combinatorics I: Association Schemes", Benjamin/-Cummings, London, 1984.
- [GM] C. D. Godsil and W. J. Martin, Quotients of association schemes, Journal of Combinatorial Theory, Series A 69 (1995), 185–199.
- [DGH1] D. G. Higman, Coherent algebras, Linear Algebra and its Applications 93 (1987), 209– 239.
- [DGH2] _____, The parabolics of a semi-coherent configuration, preprint.
- [DGH3] _____, Strongly regular designs of the second kind, European Journal of Combinatorics 16 (1995), 479–490.

Department of Mathematics, Slippery Rock University, Slippery Rock, PA 16057 $E\text{-}mail\ address:\ \texttt{alyssa.sankey@sru.edu}$