Overview of research area: association schemes

Three closely related areas:

- •Designs experimental designs in statistics, especially t-designs
- •Codes information transmission
- •Graphs general modelling of networks

Results and methods of one area are applied to another.

Strongly regular graphs (srg's)

- •Symmetry inherent in t-designs is reflected in srg's.
- •Interaction between these is fruitful.
- •Can be represented by matrices with nice algebraic properties.

An example would help

Example to illustrate the interplay between designs and srg's.

- •Start with a pentagon, an srg.
- •Construct from this a $2-(n,3,\lambda)$ design.
- •Construct the "block graph" of the design.
- •The graph is a (different) srg.

Construct the design

- The blocks of the design are sets of 3.
- •Choose these according to criterion: number of connections in pentagon graph is odd.

All possible sets of 3:

123	134	145	156	345
124	135	146	245	346
125	136	235	246	356
126	234	236	256	456

Sets of 3 that satisfy the condition:

124	134	235	156	346	
126	135	236	245	456	

These sets are the blocks of a 2-(6,3,2) design.

		Blocks									
		1	2	3	4	5	6	7	8	9	10
	1	X	X	X	X			X			
	2	X	X			X	X		X		
Points	3			X	\mathbf{X}	\mathbf{X}	X			X	
	4	X		X					X	X	X
	5				X	X		X	X		X
	6		X				X	X		X	X

Construct the block graph

- Make the blocks into points of a new graph.
- •Two are connected if they intersect in 2 points.
- •This graph is strongly regular!
- •Its sibling is known as the Triangular Graph, below.

Where do the association schemes come in?

- The two complementary block graphs above, along with the "equals" graph, form an association scheme.
- srg's are the smallest rank association schemes.
- Studied in the 1950's by Bose, Shimamoto, and others.
- Important in group theory in the 1970's. Tie in to coding theory here.
- Delsarte in '73 united the sphere-packing bound (major result in coding) and Fisher's inequality (major result in designs) using association schemes.
- Result shows association schemes to be the basic underlying structure of both.

So what is an association scheme?

- \bullet Set of points, X and some number of (symmetric) relations.
- •Think of each relation as a graph.
- •Three properties are essential:
 - 1. Every pair of points is joined in (exactly) one of the graphs.
 - 2. One of the relations is equality.

Third property requires some terminology.

Given points x and z that are joined in graph k, count triangles:

Here, everything is fixed except y.

Call this number $p_{ij}^k(x,z)$. The third property is:

3. $p_{ij}^k(x,z)$ is independent of the choice of x and z.

Call these numbers p_{ij}^k . They are the *parameters* of the association scheme.

Equivalent algebraic formulation

Let $A_i = \text{matrix of the } i^{\text{th}}$ relation, or (equivalently) the adjacency matrix of the graph. These are square matrices, with rows and columns indexed by the points, and (x, y) entry equalling 1 or 0, according as xand y are i^{th} associates or not.

$$(i)$$
 $A_0 = I$

$$(ii) \qquad \sum A_i = J$$

(i)
$$A_0 = I$$

(ii) $\sum A_i = J$
(iii) $A_i \cdot A_j = \sum_k p_{ij}^k A_k$

Importance of the matrix formulation:

- The linear span of the matrices is closed under multiplication.
- They form a basis of an associative algebra called the Bose-Mesner algebra.

Weighted association schemes

Weight the edges in each graph so that:

- •Something new (interesting?) is obtained.
- •Nice algebraic properties are retained.

Main result

- •Put a weight as above on a known family of srg's.
- •Use values ± 1 .
- •Determine when this is possible, and what the resulting structures are.

The following theorem shows that all non-trivial regular rank 3 weights on $L_2(n)$ are obtained from 2-designs.

Theorem If ω is a non-trivial regular weight with values ± 1 and full support on the lattice graph $L_2(n)$ then n is even and $\omega = \omega_1 \otimes \omega_2$, where $\delta \omega_1$ and $\delta \omega_2$ are regular 2-graphs with the same parameters.

Note: A regular 2–graph is a $2-(n,3,\lambda)$ design.

Example of a regular weight

Let Γ be the lattice graph $L_2(6)$. Let A_1 , A_2 be adjacency matrices of Γ and $\overline{\Gamma}$ respectively. Put

$$C = \begin{pmatrix} 0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & -1 & -1 \\ 1 & 1 & 0 & -1 & 1 & -1 \\ 1 & 1 & -1 & 0 & -1 & 1 \\ 1 & -1 & 1 & -1 & 0 & 1 \\ 1 & -1 & -1 & 1 & 1 & 0 \end{pmatrix}.$$

C is a conference matrix of order 6 ($C^2 = 5I$), hence represents a regular 2-graph on 6 vertices. Put

$$\omega = (I + C) \otimes (I + C)$$

$$= I \otimes I + I \otimes C + C \otimes I + C \otimes C.$$