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Abstract A weighted association scheme is a scheme with an edge weight
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– the edge weights on the fusion scheme are inherited. The reverse process
involves the coherent closure of a weighted scheme: the smallest coherent alge-
bra containing the weighted adjacency matrices. The weight function applied
to this closure is necessarily trivial, meaning constant on classes of the associ-
ated configuration. In this work there are two main objects of study: minimal
rank coherent closures of strongly regular graphs with regular weights; and
strongly regular graphs with regular weights which are obtained as fusions of
association schemes with trivial regular weights. Both of these extend work of
D. Taylor on regular two-graphs and their interactions with strongly regular
graphs. We obtain regular weights on strongly regular graphs with 125 and
256 vertices as fusions of rank 5 weighted schemes, and a family of rank 6,
primitive, non-metric schemes which are minimal-rank closures of weighted
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1 Introduction

In a 2007 paper on association schemes of order 28, Klin et al. offer a unifying
perspective on schemes of a given order ([19]). Defining a coherent configura-
tion (CC) of rank 112 on 28 points called AP(2), the authors describe a variety
of mergings, or fusions, of classes which give association schemes. In this way,
a number of schemes on 28 points of various ranks are brought together under
one theoretical umbrella, with a common parent configuration.

The goal of the present work is twofold. First, in the spirit of Klin et
al., we aim to describe some schemes as fusions of higher rank CCs. While the
approach to AP(2) makes use of its automorphism group, our primary tool will
be regular weights on SRGs as defined by D.G. Higman in [16]. Constructing
such a weight with values ±1 on a “child” scheme (or configuration) gives
an associative algebra, spanned by the weighted adjacency matrices, which
is not in general closed under the entry-wise product thus is not in itself a
coherent algebra. Using the stabilization, or coherent closure algorithm, we
may however determine the smallest coherent algebra containing it, and we
find that this algebra contains the Bose-Mesner algebra (or coherent algebra)
of the child scheme. Hence we have found a refinement or parent configuration
via the weight. This approach provides a method for identifying, and possibly
building higher rank CCs as fissions of known weighted ones.

This aim also extends a result of D. Taylor on regular two-graphs. A regular
two-graph is equivalent to a regular weight on a rank 2 CC (i.e., a complete
graph), and in fact it was with an eye to generalizing Taylor’s regular two-
graphs that Higman defined regular weights on CCs. Taylor considered (see
Section 6) the regular two-graphs with strongly regular graphs (SRGs) in their
switching classes. Put another way, these regular weights on the complete
graph have coherent closures of rank 3, giving SRGs. To extend his result, we
ask: When does a regular weight of whatever rank, on a child configuration,
have minimal closure? We will see some examples in the form of SRGs with
regular weights having coherent closures of ranks 4, 5, 6.

Our second aim is to extend a related result of Taylor’s. Here, he asked
which SRGs determine a regular two-graph. Taking the Seidel adjacency ma-
trix of the SRG, we look to see whether the switching class of that graph is
a regular two-graph. In our terminology, the Seidel matrix represents a trivial
weight on the SRG: one in which all edges are weighted −1 and all non-edges
+1. When the SRG and its complement are fused to the complete graph, the
weight is correspondingly fused, to a weight on Kn. This fusion is coherent
when the result is a regular weight, giving a regular two-graph. We extend
Taylor’s result by asking when does a trivial weight on a parent CC have a
coherent fusion, to a regular weight on a CC. Thus we have a procedure for
building non-trivial regular weights from trivial ones on known schemes. For
example, a new regular weight on SRG(126, 25, 8,4) is obtained from a trivial
weight on the Odd graph on 9 points, a distance regular graph of diameter 4,
by merging the distance 1 and 2 graphs of the scheme.



Weighted association schemes, fusions, and minimal coherent closures 3

Section 2 contains preliminaries on CCs, regular weights, two-graphs and
coherent closures. In Sections 3 and 4 we introduce coherent closure and fu-
sion in the context of regular weights. In Section 5 we present some detailed
examples to motivate the discussion that follows and clarify the definitions. In
Section 6, we treat the rank 2 case, beginning with Taylor’s results on SRGs
and regular two-graphs. A family of rank 6 closures is presented in Section 7.
In Section 8 we classify the rank 4 coherent closures.

GAP ([31]), sage ([29]), and MapleTM([20]) were used to perform compu-
tations throughout. Brouwer’s parameter tables for SRGs ([4]) and distance-
regular graphs ([3]) were accessed, as were the association schemes of small
order provided by Hanaki and Miyamoto ([12]).

2 Preliminaries

2.1 Coherent configurations

The concept of a coherent configuration was developed independently by We-
isfeiler and Lehman in [32] and by D.G. Higman in [13] and [15]. A good
introduction to the topic may be found in [18]. We consider an algebra A of
n by n matrices, over C with the following properties:

(i) A has a distinguished basis of (0, 1) matrices {A0,A1, . . . ,Ar−1};
(ii) For each i there exists i∗ ∈ {0, . . . , r − 1} such that AT

i = Ai∗ ;

(iii)

r−1∑
i=0

Ai = J where J is the all-ones matrix;

(iv) I ∈ A.

This defines the coherent algebra A of degree n and rank r, along with its stan-
dard basis. We define the support of a matrix to be the set of indices correspond-
ing to nonzero entries. Thus (iii) indicates that the Ai have non-overlapping
supports. Note that properties (i), (iii), and (iv) imply the existence of a subset

S of the index set I, such that I =
∑
i∈S

Ai.

Each of the basis matrices may be thought of as the adjacency matrix of a
graph or, equivalently, a relation, with rows and columns labelled by a common
set of vertices X. The graph with adjacency matrix Ai will be denoted Γi, and
the corresponding binary relation fi. For any binary relation f on X, we define
fT := {(y, x) ∈ X2 | (x, y) ∈ f} and f(x) := {y ∈ X | (x, y) ∈ f}.

The fact thatA is a matrix algebra means that there exist complex numbers
pkij (the structure constants, or intersection numbers) such that

AiAj =
∑
k

pkijAk. (1)

In fact, the intersection numbers are all integers with a combinatorial inter-
pretation. The constant pkij counts the number of i-j paths from a vertex x to
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a vertex z, given that (x, z) ∈ fk and this number is necessarily independent
of the choice of edge in Γk. It is convenient to denote each instance of an i-j
path by a triangle (x, y, z) of type (i, j, k). That is, (x, y, z) ∈ X3 is a triangle
of type (i, j, k) if (x, y) ∈ fi, (y, z) ∈ fj , and (x, z) ∈ fk.

Definition 1 A coherent configuration or CC (X, {fi}i∈I) is a vertex set X
together with a set of relations {fi} on X, indexed by I, whose adjacency
matrices form the standard basis of a coherent algebra.

The definitions may be formulated the other way around as in [15], with com-
binatorial axioms replacing (i)–(iv) and implying the existence of a coherent
algebra.

Commutativity of A is equivalent to the condition that pkij = pkji for all
i, j, k ∈ {0, 1, . . . , r− 1}. The algebra is symmetric if the elements of the basis
are, and this equates to i∗ = i for all i ∈ {0, 1, . . . , r − 1}.

If |S| = 1 then one of the basis matrices is the identity matrix and we
denote it by A0. In this case, the configuration is said to be homogenous.
Acknowledging that definitions in the literature vary on this point, we will call
a homogeneous, symmetric (hence commutative) CC an association scheme.
The coherent algebra corresponding to an association scheme is usually called
the Bose-Mesner algebra. Some excellent references for schemes are [2], [6],
[5], [11], and [21]. A scheme is imprimitive if any of its non-identity relations
is not connected.

Clearly by (i) and (iii), a coherent algebra is closed under entry-wise (or
Hadamard, or Schur) multiplication. In fact, Ai ◦ Aj = 0 for i 6= j and
Ai◦2 = Ai. Thus the standard basis consists of idempotents with respect to
this multiplication. In the commutative case, there is a dual basis of matrices
which are idempotents with respect to ordinary matrix multiplication.

For the schemes and weighted schemes discussed here, it is possible to
determine the character-multiplicity table. We define the intersection matrices
Mj , by Mj :=

(
pkij
)

thus the map

γ : Aj 7→Mj

is the right regular representation of A. As its image is isomorphic to A as
a matrix algebra over C, we obtain the eigenvalues of Aj from Mj . Thus a
rank r scheme has standard basis elements with at most r distinct eigenvalues.
Using the fact that the Ai are simultaneously diagonalizable when the CC is
commutative, we may compute the common multiplicities of the eigenvalues
for the scheme. More detail may be found in [2], [15], [16], [5], and [11].

In the association scheme literature, a rank r scheme is often referred to
as an (r− 1)-class scheme: ‘rank’ counts the trivial relation, while the number
of ‘classes’ does not.

Commutative schemes which have the metric or P-polynomial property are
synonymous with distance-regular graphs (DRGs) which are well documented
in [5] and [11], for example, and in the new survey [10]. The DRGs of diameter
2 are the SRGs. Some familiarity with these structures is assumed.
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2.2 Fusion and closure

A fusion or merging of relations (classes) in a CC corresponds to forming
unions of (edge sets in) the associated graphs. A fusion will be deemed coherent
if the resulting configuration is coherent. A coherent fission or refinement is
the opposite: the edge set of each basis graph is partitioned in such a way that
the corresponding relations form a CC.

The rank 2 CC represented by Kn is the minimum element in the lattice of
all CCs on a given vertex set X of size n ([15], Prop. 3). The maximum element
has rank n2, with the full matrix algebra MX(C) as its coherent algebra.

Definition 2 The coherent closure (CCL) or Weisfeiler-Lehman stabilization
of a set of matrices is the intersection of all coherent algebras containing it.

We note that any graph Γ , via the CCL of its adjacency matrix, generates a
coherent algebra, the underlying CC of which contains a set of relations whose
union is the edge set of Γ .

We refer to the CCL of a set of graphs or relations on X in the natural way,
as the CC underlying the CCL of its set of adjacency matrices. There is a
well-known algorithm for computing the CCL of a finite set of matrices (see
[32] and [1] for more). The CCL is a refinement of the original scheme which
may, of course, be recovered through fusion.

2.3 Two-graphs

The set of all graphs that are equivalent to a given graph Γ under Seidel
switching, the switching class of Γ , is called a two-graph. See [26], [28], [27]
for excellent surveys of two-graphs. Combinatorially, we define a two-graph
as a distinguished set of 3-sets (the coherent triples) from a finite set (here,
the vertex set of a graph), with the property that any 4-set contains an even
number of coherent triples.

The regular two-graphs ([30]) have the additional property that every pair
is contained in the same number of coherent triples. It is easy to see that
switching preserves this constant. The Seidel matrix of any graph in the class
of a regular two-graph has a quadratic minimal polynomial.

In the discussion of weights that follows, it will be convenient to consider a
two-graph in which the coherent triples are determined by a 3-cochain, denoted
δω, taking values in {±1}. We may define the coherent triples to be

{(x, y, z) ∈ X3 | δω(x, y, z) = −1}

hence the two-graph is regular if every pair (x, z) lies in the same number of
triangles (x, y, z) with δω(x, y, z) = −1.
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2.4 Weights

For a simple example, consider the pentagon and its complement, with edge
weights given by the matrices below.

Aω
1 =


0 1 1
1 0 −1
−1 0 1

1 0 −1
1 −1 0

 Aω
2 =


0 −1 −1

0 −1 1
−1 0 −1
−1 −1 0

1 −1 0


Regularity of the weight is defined precisely below. It implies that the span of
these matrices, along with the identity matrix representing the trivial relation,
is closed under multiplication. This weight is regular, as can easily be checked
by Aω

1
2 = 2I + Aω

2 , Aω
1 Aω

2 = Aω
1 + Aω

2 , and Aω
2
2 = 2I + Aω

1 . In fact, this
weight is equivalent to the trivial all-ones weight under switching on vertices
3 and 4. In contrast, the matrices below define a weight that is not regular on
the pentagon, as (Aω

1 )
2

does not lie in the span of I, Aω
1 and Aω

2 .

Aω
1 =


0 −1 −1
−1 0 1

1 0 1
1 0 −1

−1 −1 0

 Aω
2 =


0 −1 −1

0 1 1
−1 0 1
−1 1 0

1 1 0


Regular weights on CCs are defined in [16] and earlier in [14]. In this work,

we specify to weights with values ±1 and thus will define the terminology
accordingly. In particular, all of our weights will have full support.

Let X be a nonempty, finite set and let U := {±1}. We say f : Xp → U is
a p-cochain if, for x = (x1, x2, . . . , xp) ∈ Xp

1. f(x) = 1 when xi = xj for some i 6= j;
2. f(y) = f(x) when y results from x by interchanging xi and xj for some
i 6= j.

The coboundary of f is

δf(x) =

p∏
i=0

f(x0, . . . , xi−1, xi+1, . . . , xp) for x ∈ Xp+1

and the coboundary operator δ : Cp(U)→ Cp+1(U) is a homomorphism from
the group of p-cochains to the group of (p+1)-cochains on U , where the group
operation is

(f · g)(x) = f(x)g(x).

In the standard way, we define the p-coboundaries:

Bp(U) := {δf | f ∈ Cp−1(U)}
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and the p-cocycles:

Zp(U) := {f ∈ Cp(U) | δf = 1}

and observe the well-known facts that δ2f = 1 and Zp(U) = Bp(U).
A weight on X with values in U is defined as a 2-cochain ω ∈ C2(X,U),

and may be thought of as a matrix with rows and columns indexed by X.
When X is the vertex set of a CC X , we say ω is defined on X . We set

Aω
i := ω ◦Ai

for each i. These weighted adjacency matrices represent weighted graphs,
where ω(x, y) is the weight on the edge (x, y), which of course belongs to
exactly one of the relations.

We are interested in coherent weights, those for which the linear span of
the weighted adjacency matrices is closed under matrix multiplication. This
requirement implies the existence of structure constants βkij for the weighted
coherent algebra, giving the weighted analogue of equation (1):

Aω
i Aω

j =
∑
k

βkijA
ω
k (2)

Because ω takes values ±1, these structure constants are integers.

Definition 3 A weight ω with values in U = {±1} is coherent on a CC X if
there exist integers βkij such that the weighted adjacency matrices satisfy (2).

Given a coherent weight, we use the notation Aω for the weighted coher-
ent algebra, that is the matrix algebra over C spanned by {Aω

i }. Note that
Aω is not, in general, a coherent algebra as it is not closed under entry-wise
multiplication.

If the underlying CC has rank 2, the matrix Aω
1 has 0’s on the diagonal

and ±1 elsewhere. Hence it may be viewed as the Seidel matrix of a graph
Γ , where the edges of Γ are precisely the edges of Kn that have weight −1.
The weight therefore represents a two-graph, and it is coherent precisely when
the two-graph is regular. It is clear that the minimal polynomial of Aω

1 is
quadratic, since

(Aω
1 )2 = β0

11A
ω
0 + β1

11A
ω
1

and Aω
0 = I.

To get a combinatorial description of the βkij , we return to the notion
of a triangle (x, y, z) of type (i, j, k) recalling that this means x, y, z ∈ X,
(x, y) ∈ fi, (y, z) ∈ fj , and (x, z) ∈ fk. The weight of the triangle is simply
the product of the weights on the three edges:

δω(x, y, z) = ω(x, y)ω(y, z)ω(z, x).

Now, for (x, z) ∈ fk, the (x, z) entry of the product (2) gives∑
y

Aω
i (x, y)Aω

j (y, z) = βkijA
ω
k (x, z).
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The summands on the left are nonzero only for those y for which (x, y, z) has
type (i, j, k), that is for y ∈ fi(x) ∩ fTj (z). Thus∑

ω(x, y)ω(y, z) = βkijω(x, z) which implies∑
δω(x, y, z) = βkij

where sums are over all y such that (x, y, z) has type (i, j, k). Hence βkij is the
sum of the weights of all such triangles. We now see that a weight is coherent
on the CC if and only if this sum is independent of the choice of vertices x
and z in the graph of fk.

Separating the triangles of weight 1 from those of weight −1 gives a notion
of regularity that extends that of regular two-graphs. Given (x, z) ∈ fk, set
βkij(x, z, α) equal to the number of triangles (x, y, z) of type (i, j, k) and weight
α.

Definition 4 A weight with values in U is regular on a CC X if βkij(x, z, α)
depends only on i, j, k, and α and not on the choice of vertices in Γk.

Observe that the total number of such triangles is pkij , hence

pkij =
∑
α

βkij(x, z, α) = βkij(x, z, 1) + βkij(x, z,−1) (3)

and
βkij =

∑
α

αβkij(x, z, α) = βkij(x, z, 1)− βkij(x, z,−1). (4)

Proposition 1 A coherent weight with values {±1} on a CC X is regular on
X .

Proof We can solve (3) and (4) for βkij(x, z, 1) and βkij(x, z,−1) in terms of pkij
and βkij , both of which are independent of x and z.

3 Coherent closures of regular weights

For this section, we let ω be a weight with values ±1, regular on a CC X ,
with notation as in Section 2. We investigate the CCL of Aω, and find nec-
essary conditions for this CCL to have minimal rank. It is immediate that
the CCL of Aω under ◦ must contain A. Now let B be the algebra generated
by the union of A and Aω or equivalently, as we shall see below, by the set
{Aω

i (α)}i=0,...r, α=±1, where the (x, y) entry of Aω
i (α) is defined to be 1 if

Aω
i (x, y) = α, and 0 otherwise. B is an algebra under ordinary multiplication,

but is not in general a coherent algebra. Put C := CCL(B). Naturally C may be
non-symmetric or non-commutative. Figure 1 shows the inclusions as matrix
algebras.

1 Figure produced by PiCTeX.
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Fig. 1 Coherent algebra inclusion1

C := CCL(B)

B := 〈A ∪ Aω〉 = 〈Aω
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The angled brackets in the diagram indicate the algebra generated, under
ordinary matrix multiplication over C, by the indicated set. Determining con-
ditions under which B and C coincide is a main goal of this work. The case in
which A and Aω coincide is precisely the situation where ω is termed a trivial
regular weight.

Lemma 1 〈A ∪ Aω〉 = 〈Aω
i (α)〉i=0,...r, α=±1.

Proof Since Ai = Aω
i (1) + Aω

i (−1) and Aω
i = Aω

i (1) − Aω
i (−1), the union

A ∪ Aω is contained in the right hand side. The reverse inclusion is obtained
by solving these pairs of equations to get

Aω
i (1) =

1

2
(Ai + Aω

i )

Aω
i (−1) =

1

2
(Ai −Aω

i ) .

Notation. We will henceforth use A+
i and A−i to denote Aω

i (1) and Aω
i (−1)

respectively whenever ω is clear from the context.

Lemma 2 CCL(Aω) = CCL(B).

Proof Clearly, CCL(Aω) ≤ CCL(B). On the other hand, CCL(Aω), must con-
tain

Aω
i ◦Aω

i = Ai,

so it contains both A and Aω, hence B. We conclude CCL(Aω) ≥ CCL(B).

Lemma 3 Let (X, {gj}) be the CC underlying CCL({Aω
i }). Then (X, {fi})

is a fusion of (X, {gj}).

Proof Since A ≤ C as coherent algebras, the associated CCs must be related
by fusion ([15]).
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It should be noted that the rank of the CCL of a regular weight is not
preserved by switching. That is, two weights that are switching equivalent will
typically not have CCLs of the same rank. As weights, like two-graphs, are
considered unique up to switching, the determination of whether a given weight
has minimal CCL may in practice require analysis of the entire switching class.
Conditions on the parameters, of course, apply to the whole class.

4 Fusions of regular weights

Let C be the CCL of a CC with coherent algebra A and regular weight ω. Since
ω is constant on A+

i and A−i for all i, and these generate B, ω is therefore
constant on the relations of C, a fission of B. Setting Cω

i := ω ◦Ci, we obtain
a trivial regular weight on C.

On the other hand, we may recover A and Aω given C with Cω
i = αiCi,

αi ∈ {±1}, by applying the same fusion to C and Cω. Here the merging is done
according to a partition π of the index set. Summations are over the indices
in one part of the partition, so that

Aj :=
∑
i∈πj

Ci

and

Aω
j := ω ◦

∑
i∈πj

Ci =
∑
i∈πj

ω ◦Ci =
∑
i∈πj

Cω
i .

In Figure 2, it is important to note that Cω is a coherent algebra (and is
equal to C) while Aω is not (unless ω is trivial on A).

Fig. 2 Fission and fusion of weighted configurations

C := 〈C0,C1, . . . ,CR〉
◦ω−→ Cω := 〈Cω

0 , . . . ,C
ω
R〉xfission

yfusion

xfission

yfusion

A := 〈A0,A1, . . . ,Ar〉
◦ω−→ Aω := 〈Aω

0 ,A
ω
1 , . . . ,A

ω
r 〉

Beginning with A and ω, it is always possible to complete the diagram: the
Schur idempotents for C are determined by the stabilization process, while the
standard basis of Cω is given by {ω ◦Ci}.

Beginning with C, we may or may not be able to complete the diagram.
Various trivial weights on C may be investigated, various mergings may be
tested for coherence, and only if the induced weight on the fusion turns out to
be coherent can the diagram be completed.
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4.1 Parameter conditions for coherent fusions

In this section we consider the conditions under which a CC of rank R+1 has a
trivial weight supporting fusion to a regular weight on a CC of rank r+1. There
are two requirements here: (1) that some partition affords a fusion scheme of
rank r+1 ; (2) that the weight induced by the trivial weight and the fusion be
coherent on the rank r+ 1 configuration. We determine parameter conditions
for this situation.

Let X be a CC of rank R + 1 with structure constants {skij}. A fusion
of X to a rank r + 1 CC is coherent if I := {0, 1, . . . , R} is partitioned into
J0,J1,J2, . . . ,Jr and∑

i∈Js

∑
j∈Jt

sk1ij =
∑
i∈Js

∑
j∈Jt

sk2ij ∀s, t, u ∈ {0, 1, . . . , r} and ∀k1, k2 ∈ Ju. (5)

In this case, the parameters of the fusion scheme are given by

pust :=
∑
i∈Js

∑
j∈Jt

skij (6)

for any k ∈ Ju.
Suppose now that X has a coherent fusion to a CC Y = (X, {fi}i∈J ) of

rank r + 1, where J = {0, 1, . . . , r}. Define a trivial weight on X by setting
Aω
i := αiAi, where αi ∈ {±1} for all i ∈ I and α0 = 1. Applying the fusion

to our weight we see that the induced weight on Y is coherent provided the
structure constants βkij , are well-defined. That is, for all s, t, u ∈ J and for all
k1, k2 ∈ Ju,

αk1
∑
i∈Js

∑
j∈Jt

αiαjs
k1
ij = αk2

∑
i∈Js

∑
j∈Jt

αiαjs
k2
ij . (7)

In this case, Y has parameters given by

βust = αk
∑
i∈Js

∑
j∈Jt

αiαjs
k
ij , (8)

for each k ∈ Ju.
Note: Condition (7) holds if sk1ij = sk2ij for all i ∈ Js, j ∈ Jt, k1, k2 ∈ Ju but

other solutions are possible. In particular, αk1 = αk2 need not be the case in
general.

5 Examples

5.1 The 4-cube

The 4-cube is a diameter 4 DRG, or rank 5 association scheme with vertex set
F4
2. The relations are given by the distance graphs where the distance between

two 4-tuples is the number of indices in which they differ.
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Applying the fusion A0,A3+A4,A1+A2 to this scheme gives the Clebsch
graph, or SRG(16, 5, 0, 2). This graph may be described in the following way:
the vertices are the 16 even-cardinality subsets of {1, 2, . . . , 5}. Two vertices
are adjacent when their symmetric difference has cardinality 4.

Now, apply the same fusion to a trivial weight on the 4-cube to get a regular
weight on the Clebsch graph. We merge classes 3 and 4, 1 and 2, as before,
but this time put a negative weight on classes 2 and 4. Thus our weighted
adjacency matrices are

I,A3 −A4,A1 −A2.

This weight is regular, and the CCL of its adjacency algebra is the (dimension
5) coherent algebra of the 4-cube.

Observe that we may identify F4
2 with subsets of {1, 2, 3, 4}, and that these

are in one-to-one correspondence with the even subsets of {1, 2, 3, 4, 5}. (Each
odd cardinality subset S of the former corresponds to S ∪ {5}.) Now, since
the 4-tuples at distance 3 or 4 have symmetric difference of cardinality 4, we
see that A3 + A4 gives the Clebsch graph, and A1 + A2 its complement. The
edges are weighted so that the CCL refines the classes according to distance
and we recover the 4-cube.

5.2 SRG(126, 25, 8,4)

This example is from the Johnson scheme J(9, 4). The rank 5 scheme also
arises as a distance regular graph on 126 vertices, with valencies 1, 5, 20, 40, 60
and distance array {5, 4, 4, 3; 1, 1, 2, 2} ([5]). It is known as the Odd graph on
9 points; merging classes 1 and 2 gives SRG(126,25,8,4). The Odd graph is Q-
polynomial with ordering 0,4,1,3,2. Lastly, this scheme may be obtained from
a rank 3 group action of the alternating group A10.

The vertices are the
(
9
4

)
4-sets from the set {1, 2, . . . , 9}, with adjacency

when the two sets are disjoint. Clearly, the Johnson scheme J(9, 4) is related,
with the same vertex set and relations determined by the intersection sizes.
Indeed, this Johnson scheme has two P-polynomial orderings, the standard
one: 0, 1, 2, 3, 4 and 0, 4, 1, 3, 2. We see that the Odd graph is the DRG
determined by the second of these orderings.

The intersection matrices, M1 :=
(
pki1
)

and M2 :=
(
pki2
)

are below. 1
25 8 4

16 21

  1
16 21

100 84 78


The weighted intersection matrices, Mω

1 :=
(
βki1
)

and Mω
2 :=

(
βki2
)

are 1
25 −8 −4
−16 −3

  1
−16 −3

100 −12 −6

 .
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A regular weight with the same parameters is obtained through the rank 3
action of A10 on bisections – unordered pairs of 5-sets from {1, 2, . . . , 10} ([24]).
Using techniques developed by D.G. Higman in [16], a transitive monomial
representation may be constructed with centralizer algebra Aω. The fusion
described above is therefore another construction of a known regular weight.

Observe that for certain triples (i, j, k), βkij = −βkij(−1) = −pkij . All tri-

angles of these types have weight −1, as βkij(1) = 0. But this weight is not
trivial. The eigenvalues and multiplicities are:

I A1 A2

ζ1 1 25 100 1
ζ2 1 −3 2 90
ζ3 1 7 −8 35

I Aω
1 Aω

2

ζ1 1 5 −10 42
ζ2 1 −1 8 75
ζ3 1 −15 −20 9

5.3 Folded 9-cube

This example on 256 vertices comes from the folded 9-cube, also known as a
generalized Odd graph. The rank 5 scheme is Q-polynomial with two distinct
orderings. (These DRGs are described in [5, Sections 6.3 and 6.4] and have
distance array [9, 8, 7, 6; 1, 2, 3, 4].) The folded n-cube has antipodal pairs of
vertices in the n-cube as its vertices, with two such pairs adjacent if the possible
distances between them are 1 and n− 1.

The intersection matrices, eigenvalues and multiplicities are given below.
Observe that this is a non-trivial weight on SRG(256,45,16,6) obtained by
merging classes 1 and 2. We denote the fusion to the weight by {1−2+}{3−4+},
meaning that Aω

1 = −B1 + B2 and Aω
2 = −B3 + B4.

M1 =

 1
45 16 6

28 39

 M2 =

 1
28 39

210 182 170



Mω
1 =

 1
45 −16 −6
−28 −9

 Mω
2 =

 1
−28 −9

210 −42 −10


I A1 A2

ζ1 1 45 210 1
ζ2 1 13 −14 45
ζ3 1 −3 2 210

I Aω
1 Aω

2

ζ1 1 5 −10 126
ζ2 1 −27 −42 10
ζ3 1 −3 14 120

There are two P-polynomial orderings for this scheme, the standard one
and {2, 4, 3, 1}, thus we obtain the same SRG and weight by merging classes 1
and 4 in the halved 9-cube, DRG(36,21,10,3;1,6,15,28). This regular weight is
new, as far as the authors are aware, and in particular does not arise through
a transitive monomial representation of any ATLAS groups ([25], [8]).
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6 Rank 2 case

Two questions regarding regular two-graphs and SRGs are answered in the
propositions quoted below, due to Don Taylor. The first answers the question:
When does the Seidel matrix of an SRG give a regular two-graph? The answer
quite naturally gives conditions on the SRG parameters.

Proposition 2 ([30], Prop. 2.4.) Let A1 be the (0, 1)-adjacency matrix of
SRG(n, k, λ, µ) and set A2 = J −A1 − I. Then A2 −A1 is the matrix of a
regular two-graph if and only if n = 2(2k − λ− µ).

The second question is, in a sense, the reverse of the first one: When does
the switching class of a regular two-graph contain an SRG? Here the answer
takes the form of restrictions on the regular two-graph and on the SRG pa-
rameters. Note that the notation of Section 2.4, particularly the βkij , applies to
the regular two-graphs, as we may view them as regular weights on complete
graphs. The result below is strengthened in [5, Theorem 1.5.6 and addendum].

Proposition 3 ([30], Prop. 3.6.) If the switching class of a regular two-
graph contains an SRG, then either β1

11 = 0 and n−1 is the sum of two squares;
or the eigenvalues of A1 are odd integers ρ1 ≥ ρ2 and the srg parameters satisfy
(1) or (2) below, with σ1 = 1

2 (ρ1 − 1), σ2 = − 1
2 (ρ2 + 1),

n = 2(σ1 + σ2 + 2σ1σ2 + 1), β1
11 = 2(σ1 − σ2).

(I)

k = (2σ1 + 1)σ2

λ = (σ1 + 1)(σ2 − 1)

µ = σ1σ1

(II)

p011 = (σ1 + 1)(2σ2 + 1)

p111 = (σ1 + 2)σ2

p211 = (σ1 + 1)(σ2 + 1)

For example, the lattice graph L2(4) has SRG parameters (16,6,2,2). We
see this satisfies (II) above with σ1 = 1, σ2 = 2, ρ1 = 3, ρ2 = −5, thus we have
a regular two-graph represented by J− I− 2A1 = A2 −A1.

To generalize both of these propositions, we rephrase in light of the fact
that a regular two-graph is a regular weight on a rank 2 CC (i.e., the complete
graph). In the first case, we observe that the Seidel matrix of an SRG is
S = −A1 + A2 in our notation, where Ai has (0, 1) entries. Hence we may
view S as a (trivial) weight on the SRG, with (−) weight on all edges of the
graph and (+) on all edges of the complement. When S determines a regular
two-graph, the weight has a fusion to a regular weight on Kn. That is, the
fusion A1 + A2 gives Kn, the corresponding fusion applied to the weight is
ω− I = −A1 + A2, and this weight is regular. To generalize the question that
Proposition 2 answers we therefore rephrase it as:

When does a trivial weight on a rank 3 CC have a fusion to a nontrivial
regular weight on a rank 2 CC?

The objects of interest are therefore regular weights obtained through fusions
of trivial weights on higher rank CCs. In Section 8 we treat the rank 4 case.
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The distance-regular, rank 5 schemes have been analysed by the author, with
regard to fusion and closure of regular weights. This forms part of a work in
progress on the rank 5 case.

In a similar way, we may generalize Proposition 3 by rephrasing the ques-
tion to:

When is the CCL of a rank 2 regular weight equal to a rank 3 CC?

(More precisely, when does some weight in the switching class of a regular
rank 2 weight have minimal coherent closure?) Here, we are interested in the
case B = C in the notation of Section 3.

Generally, the minimal rank of the CCL is 1+2(r−1) = 2r−1 when A has
rank r. However, it may happen that Aω

i (α) = 0 for some i and some α hence
lower rank than 2r − 1 is possible. We use the term minimal rank to mean∣∣ {Aω

i (α) | Aω
i (α) 6= 0}

∣∣. A quick example: suppose we have an SRG with
edges weighted ±1 but all non-edges weighted −1. In that case, Aω

2 (1) = 0, B
is generated by the four matrices Aω

0 = I, A+
1 , A−1 , and A−2 so the minimal

rank of the CCL is 4.

7 A family of rank 6 closures

We begin with an example of a rank 6 association scheme on 256 points –
primitive, commutative, neither metric nor cometric – which is the CCL of
a regular weight on L2(16) = SRG(256, 30, 14, 2). We then extend the con-
struction to the family L2(n) whenever there exists a regular two-graph on n
vertices, and show that the CCL has rank 6 precisely when the two-graph has
minimal CCL.

In [25] a construction is given for regular weights on the lattice graphs,
L2(n) = SRG(n2, 2(n − 1), n − 2, 2) from the tensor product of two regular
two-graphs. Here, we obtain the regular weight from T⊗2 where T is a matrix
of regular two-graph τ .

There is a unique regular two-graph on 16 points represented by the matrix

T =



0 + − + + − + − − + − + + − + −
+ 0 + − − + − + + − + − − + − +
− + 0 + + − + − − + − + + − + −
+ − + 0 − + − + + − + − − + − +
+ − + − 0 + − + + − + − − + − +
− + − + + 0 + − − + − + + − + −
+ − + − − + 0 + + − + − − + − +
− + − + + − + 0 − + − + + − + −
− + − + + − + − 0 + − + + − + −
+ − + − − + − + + 0 + − − + − +
− + − + + − + − − + 0 + + − + −
+ − + − − + − + + − + 0 − + − +
+ − + − − + − + + − + − 0 + − +
− + − + + − + − − + − + + 0 + −
+ − + − − + − + + − + − − + 0 +
− + − + + − + − − + − + + − + 0



.
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Set

A1 := I⊗ (J− I) + (J− I)⊗ I, A2 := (J− I)⊗ (J− I), A0 := I⊗ I,

and ω := (I + T)⊗ (I + T).

The products Aω
i Aω

j result in weighted intersection matrices

Mω
1 =

 1
30 2 2

15 4

 Mω
2 =

 1
15 4

225 30 4

 .

Clearly,
A−1 = I⊗T− + T− ⊗ I,

A+
1 = I⊗T+ + T+ ⊗ I,

A−2 = T− ⊗T+ + T+ ⊗T−,

A+
2 = T− ⊗T− + T+ ⊗T+,

and the minimal rank of the CCL is therefore 5. In fact, Aω
2 (1) splits in the

CCL, and we obtain a rank 6 scheme with relations:

I, I⊗T−+T−⊗ I, I⊗T+ +T+⊗ I,T−⊗T+ +T+⊗T−,T−⊗T−,T+⊗T+.

This construction is possible with any regular two-graph. Indeed, the reg-
ular weight on L2(n) obtained from a regular two-graph represented by the
(0,±1) matrix T has intersection matrices

Mω
1 =

 1
2(n− 1) A 2

n− 1 2A

 and Mω
2 =

 1
n− 1 2A

(n− 1)2 (n− 1)A A2

 ,

where A is the two-graph parameter, that is, T2 = (n− 1)I +AT ([25]).

Put ω := (I + T)⊗ (I + T) and A+
i ,A

−
i as above.

Proposition 4 A regular weight on L2(n) from a regular two-graph with ma-
trix T has coherent closure of rank ≥ 6, with equality if and only if T− is the
matrix of a (possibly imprimitive) SRG.

Proof The product (A−1 )2 is I⊗ (T−)2 + 2T− ⊗T− + (T−)2 ⊗ I which does
not lie in span(I,A−i ,A

+
i ). The middle term forces A+

2 to split into T−⊗T−

and T+⊗T+. This shows that the rank of the CCL is at least 6. For equality,
we must have no further splitting, hence (T−)2 must lie in the span of I,T−,
and T+. But then T− is the matrix of an SRG.

Conversely, suppose that T− is the matrix of SRG(n, k, λ, µ), and set B0 =
I, B1 = A−1 , B2 = A+

1 , B3 = A−2 , B4 = T− ⊗ T−, B5 = T+ ⊗ T+. The
products BiBj can be worked out directly in terms of n, k, λ, µ, λ := n− 2k+
µ− 2, and µ := n− 2k + λ, resulting in the intersection matrices below. Here
σ := k − λ− 1 and ρ := k − µ.
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M1 =


1

2k λ µ 2
σ ρ 1
k λ+ ρ 2σ 2µ

k µ 2λ
σ 2ρ

, M2 =



1
σ ρ 1

2l µ λ 2

l σ + λ 2µ 2ρ
ρ 2σ

l µ 2λ

,

M3 =



1
k λ+ ρ 2σ 2µ

l σ + λ 2µ 2ρ

2kl lλ+ kµ lµ+ kλ λλ+ µµ+ 2σρ 2λµ+ 2σ2 2λµ2ρ
2

kσ kρ λρ+ µσ 2λσ 2µρ

lσ lρ µρ+ λσ 2µσ 2λρ

,

M4 =


1

k µ 2λ
ρ 2σ

kσ kρ λρ+ µσ 2λσ 2µρ
k2 kλ kµ λµ λ2 µ2

σρ σ2 ρ2

,

M5 =



1
σ 2ρ

l µ 2λ

lσ lρ µρ+ λσ 2µσ 2λρ
σρ σ2 ρ2

l2 lµ lλ λµ µ2 λ
2

 .

Note that the condition on τ is precisely that of Proposition 2, hence the
SRG necessarily satisfies n = 2(2k−λ−µ), and we see that the minimal CCL
for this family is achieved when τ itself has minimal CCL.

For the n = 16 example, the rank 6 character-multiplicity table is

I A1 A2 A3 A4 A5 mi

ζ1 1 12 18 36 108 81 1
ζ2 1 4 10 −12 −12 9 18
ζ3 1 8 6 12 0 −27 12
ζ4 1 −4 2 4 −4 1 81
ζ5 1 0 −2 −4 8 −3 108
ζ6 1 4 −6 4 −12 9 36

The fusion {12}{345} with signs {−+}{+−+} determines a regular weight
on SRG(256, 30, 14, 2). Notice, this can be seen from the character table as
±A1 + A2 and A3 ±A4 + A5 all have three distinct eigenvalues.
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8 Rank 4 closures

In this section, we investigate rank 4 CCLs, of regular (±1) weights on SRGs.
As noted at the end of Section 6, a CCL of rank 4 may occur when the weight
is constant on either A1 or A2. We show that such a scheme is necessarily
imprimitive, with one relation a disjoint union of complete graphs.

The imprimitive rank 4 schemes were studied by Y. Chang and T. Huang
in [7], using the term ISA to denote an imprimitive (symmetric) associa-
tion scheme, excluding the “trivial” tensor products and wreath products of
schemes. If at least one of the relations in such a scheme is an SRG, the SRG
is called Higmanian. Here, we will call a rank 4 scheme Higmanian if it is
imprimitive and has at least one SRG among its relations.

E. van Dam in [9] classified the rank 4 schemes as follows: (i) at least one
of the Ai has four distinct eigenvalues; (ii) at least one of the relations is the
disjoint union of (connected) SRGs with the same parameters; (iii) all three re-
lations are SRGs, this latter group called the amorphic schemes. The schemes
in group (i) are characterized in [9] and include the DRGs. The rank 4 CCLs
we obtain are either amorphic (Higmanian with respect to two relations), Hig-
manian but not amorphic, or have two relations with four distinct eigenvalues.
We use the following notations in Figure 3.

amorphic: Γi is strongly regular, possibly imprimitive, for all i.
4-eigenvalue: Γi has 4 distinct eigenvalues, for at least one i.⋃̇

SRG: Γi is a disjoint union of some (connected) SRGs having the
same parameters, for at least one i.
SRG: Γi is strongly regular (primitive) for at least one i.
metric: Γi is distance-regular for at least one i.
Higmanian: Imprimitive SRG scheme.
primitive: Γi is connected for all i.
I–IV: labels for the schemes which occur as CCLs.

LetA be the coherent algebra of a rank r+1 scheme with Schur idempotents
Ai. Let ω be a regular weight on A with values {±1} and the usual notation
Aω, Aω

i = ω ◦Ai. We know

AiAj =
∑
k

pkijAk and Aω
i Aω

j =
∑
k

βkijA
ω
k . (9)

Recall from Section 2 that Ai = A+
i + A−i and Aω

i = A+
i −A−i . Suppose

that CCL(Aω) is a rank 4 association scheme denoted B, with structure con-
stants skij , 0 ≤ i, j, k ≤ 3. A rank 4 CCL requires that ω be all positive or all

negative on either A1 or A2. That is, one of the A+
i or A−i is zero. Let us

assume for now that Γ and ω are given by the fusion {1−2+}{3+}, so that
B1 = A−1 ,B2 = A+

1 ,B3 = A+
2 and A−2 = 0.

We claim that B is symmetric. Indeed, all homogeneous CCs of rank up
to 5 are commutative ([15]). If B is not symmetric, then BT

1 = B2 because

2 Figure produced by PiCTeX.
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Fig. 3 Rank 4 association schemes2
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amorphic 4-eigenvalue
⋃̇

SRG

SRG

Higmanian = imprimitive ∩ SRG

metric

primitive

I

II III IV

B3 = A2, which is symmetric by assumption. But then

(Aω
1 )T = (−B1 + B2)T = −B2 + B1 = −Aω

1 ,

contradicting the fact that Aω is symmetric.
Substituting A1 = B1 + B2, Aω

1 = −B1 + B2, A2 = Aω
2 = B3 into (9),

and equating coefficients of Bi, we obtain:

p111 = s111 + 2s112 + s122 = s211 + 2s212 + s222, (10a)

β1
11 = −s111 + 2s112 − s122 = s211 − 2s212 + s222, (10b)

p211 = s311 + 2s312 + s322, (10c)

β2
11 = s311 − 2s312 + s322, (10d)

p112 = s113 + s123 = s213 + s223, (10e)

β1
12 = s113 − s123 = −s213 + s223, (10f)

p212 = s313 + s323, (10g)

β2
12 = −s313 + s323, (10h)

p122 = s133 = s233, (10i)

β1
22 = −s133 = s233, (10j)

p222 = s333, (10k)

β2
22 = s333. (10l)
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Equating two expressions for the sum of p111 and β1
11 from (10a) and (10b),

and two expressions for their difference, gives

2s112 = s211 + s222, (11a)

2s212 = s111 + s122. (11b)

Similarly, from (10e) and (10f):

s113 = s232, (12a)

s123 = s213 (12b)

which along with the standard identity skijvk = sikjvi proves that v1 = v2 or

s123 = 0. Finally, from (10i) and (10j) we get

s133 = s233 = 0 (13)

and this shows that any triple with two Γ3 edges must have the third edge in
Γ3. Hence B is imprimitive with Γ3 a disjoint union of cliques. We formulate
our observations thus far as a lemma.

Lemma 4 Suppose B = CCL(Aω) is a homogeneous CC of rank 4. Then B
is a symmetric, imprimitive association scheme with Γ3 a disjoint union of
cliques and either v1 = v2 or s123 = 0.

Lemma 5 If CCL(Aω) is a rank 4 association scheme and is metric, then the
P-polynomial ordering is either (1, 2, 3) or (2, 1, 3).

The effect of this lemma is to rule out fusions other than {12}{3} in the metric
case, so that we may proceed to find rank 4 closures using this fixed notation
for all cases.

Proof Clearly Γ3 is not a DRG of diameter 3. The identities (10) through (13)
are invariant under the transposition (1, 2) of indices provided we allow, as we
may without loss of generality, ω to be negative on B2 and positive on B1.
The cases we must consider are therefore (i) Γ1 is a DRG with Γ3 the distance
2 graph; (ii) Γ1 is a DRG with Γ3 the distance 3 graph.

To rule out (i), let Γ1 be a DRG with distance 2 graph a union of cliques.
Re-ordering the indices to match the P-polynomial ordering for B, the fusion
is now {13}{2} and equation (13) gives a2 = 0. Since v1 = v3, s313 = s133 = a3.
Thus (11b) implies that a1 = a3. Now employing ai + bi + ci = b0, we get

c3 = b1 + 1, b2 =
b0(b1 + 1)

2b1 + 1
, c2 = b0 − b2. (14)

Because it is imprimitive, Smith’s theorem ([5], Thm. 4.2.1) says that Γ1

is bipartite and/or antipodal if v1 > 2.
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If Γ1 is bipartite, the distance between any two vertices in the same half of
the bipartition must be 2, thus Γ2 consists of exactly two cliques. In this case,
b1 = b0 − 1. But then

b2 =
b0

2

2b0 − 1
,

an integer. However, 2b0 − 1 is relatively prime to b0, hence also to b0
2 and

thus b0 must equal 1.
If Γ1 is not bipartite but is antipodal, then b2 = 1 and c3 = b0. From (14)

we again obtain b0 = 1.
It remains to rule out v1 ≤ 2. Let t be the size of the Γ2 cliques, so that n

is a multiple of t and n = 1 + v1 + v2 + v3 ≤ t+ 4. The possibilities for (n, t)
are (8, 4), (6, 2), and (4, 2) but no DRGs with v1 = v3 have these parameters.

From this point onward, we may assume the fusion is {12}{3} and equa-
tions (10) through (13) hold. As Γ is the complement of Γ3, it has the imprim-
itive parameters SRG(rt, t(r − 1), t(r − 2), t(r − 1)), where t is the size of the
cliques in Γ3, and r is the number of distinct cliques. We note in particular
that β2

22 = p222 = t− 2 and p112 = t− 1.

8.1 Metric case, s123 6= 0.

Returning to Lemma 4, suppose s123 6= 0, which clearly includes the metric
case. Since v1 = v2 and thus s112 = s211 and s212 = s122, we use (11a) and (11b)
to see that s211 = s222 and s111 = s122. The weight parameters therefore satisfy:

β1
11 = 2s211 − 2s111,

β2
11 = 2s311 − 2s312, and

β1
12 = s113 − s123.

Suppose now that B is a metric scheme, i.e. that Γ1 is a DRG with distance
array {b0, b1, b2; c1, c2, c3}. From above, s133 = 0 gives a3 = 0 which implies
c3 = b0. Further, s311 must be 0, hence s322 = 0 and

p112 = s213 = −β1
12.

From v1 = v2, we obtain c2 = b1, and since s111 = s221, a1 = a2. Now use the
identity ai + bi + ci = b0 for i = 1, 2 to see that b2 = c1 = 1. Finally, v3 = 1,
so the Γ3-cliques have size 2, and our distance array is {b0, b1, 1; 1, b1, b0}. The
weighted intersection matrices and character-multiplicity table are as follows.

Mω
1 =

 1
2b0 β

1
11 −2b0
−1

 Mω
2 =

 1
−1

1


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I Aω
1 Aω

2

ζ1 1 0 1 n/2

ζ2 1 1
2 (β +

√
β2 + 8k) −1 z2

ζ3 1 1
2 (β −

√
β2 + 8k) −1 z3

Note that either β2 + 8k is a square, or β = 0 and z2 = z3 = n/4.
The DRGs obtained above are Taylor graphs ([5], Section 1.5), in which

Γ1 is an antipodal double cover of Kb0+1, or are antipodal and bipartite with
b1 = b0−1, and Γ1 the complement of a 2×(b0+1) grid. The weight parameter
β1
11 is 4b1−2b0 +2, which equals p111 = 2b1 (i.e. λ) in the latter case and differs

from λ in the former.
The Taylor graphs are in one-to-one correspondence with the regular two-

graphs, thus it is interesting that these should be precisely the DRGs that
occur as minimal (rank 4) closures of weighted SRGs.

We have proven the following theorem. Parameters up to n = 100 are given
in Section 9.1, Table 3.

Theorem 1 Let Γ1 be a distance-regular graph of diameter 3 with a fusion
to an SRG Γ and a nontrivial regular weight ω, on Γ . Then Γ = Γ1 ∪ Γ2,
Γ1 is a Taylor graph with intersection array {b0, b1, 1; 1, b1, b0}, possibly the
complement of a 2 × (b0 + 1) grid with b1 = b0 − 1. Furthermore, Γω has
weighted intersection matrices as above, with β1

11 = 4b1 − 2b0 + 2.

8.2 General case, s123 6= 0.

We look next at the case in which s123 6= 0 but B is not necessarily metric, we
find that B is an imprimitive rank 4 scheme, the subject of [7], and belongs to
the subclass with v1 = v2. Intersection matrices and the character-multiplicity
table for these rank 4, imprimitive, (symmetric) association schemes, or rank
4 ISAs are given in that paper, but are presented here in our notation and
ordering — note that in [7] it is Γ1 that is a union of cliques. We give an
independent verification.

Consider vertices x, y, and z with (x, y, z) forming a triangle of type
(1, 3, 2). The parameter s113 counts vertices w, adjacent to y in Γ3, such that w
is adjacent to x in Γ1. On the other hand, s223 counts all v, adjacent to z in Γ3

and adjacent to x in Γ2. In total, these count the neighbours of y and z in Γ3,
hence they sum to t− 2. By (12a), s113 = s223 = (t− 2)/2. This is independent
of z, thus x is adjacent in Γ1 to t/2 vertices from each of the r− 1 t-cliques of
Γ3 not containing x. Hence, v1 = t(r − 1)/2 = v2.

Now, p112 = t − 1, and since this parameter is the sum of s113 and s123, we
obtain s123 = t/2. Next, β1

12 = s113 − s123 = −1. We determine β2
11 using this

and k = v1 + v3, l = v2, obtaining

β2
11 = − t(r − 1)

t− 1
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which, incidentally, implies that t− 1 must divide r − 1.
Finally, β2

22 = p222 = s333 = t − 2. The weighted adjacency matrices are
therefore determined.

Mω
1 =

 1

t(r − 1) β1
11 −

t(r−1)
t−1

−1

 Mω
2 =

 1
−1

t− 1 t− 2


Claim: s211 = t

2 (r − 2)− s111. To see this, consider (x, y) ∈ Γ1 and let Cx, Cy
be the cliques of Γ3 containing x and y respectively. Count the neighbours of
x in Γ1 that are not contained in Cy. There are t/2 of them in each of the
r − 2 cliques. We may also count these vertices as s111 + s112 which proves the
claim, given v1 = v2. The parameters of these imprimitive, non-metric rank 4
schemes are therefore determined by t and r, with the exception of s111. The
intersection matrices and character-multiplicity table are given below, with x1
and x2 roots of

x2 +

[
2s211 −

t

2
(r − 2)

]
x− t2(r − 1)

4(t− 1)
(15)

and multiplicities

zi =
rt2(r − 1)(t− 1)

2t2(r − 1) + 4uxi(t− 1)
, u = 2s211 −

t

2
(r − 2). (16)

M1 =



1
t(r−1)

2 s111 s
2
11

t(r−1)(t−2)
4(t−1)

s211 s
1
11

t2(r−1)
4(t−1)

t−2
2

t
2



M2 =



1

s211 s111
t2(r−1)
4(t−1)

t(r−1)
2 s111 s211

t(r−1)(t−2)
4(t−1)

t
2
t−2
2


M3 =


1

t−2
2

t
2

t
2
t−2
2

t− 1 t− 2


I A1 A2 A3 mi

ζ1 1 t
2 (r − 1) t

2 (r − 1) t− 1 1
ζ2 1 −t/2 −t/2 t− 1 r − 1
ζ3 1 x1 −x1 −1 z1
ζ4 1 x2 −x2 −1 z2

We have observed that each vertex is adjacent in Γ1 to exactly half, that
is t/2, of the vertices in each t-clique of Γ3. Of course, it is adjacent to the
remaining t/2 vertices in Γ2. Chang and Huang use separate parameters, a
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and b, to represent the cardinalities of the intersections of Γ1(x) and Γ2(x)
with a clique not containing x. Thus the rank 4 ISAs do not necessarily have
v1 = v2.

Theorem 2 A rank 4 ISA is the coherent closure of a regular weight on a
strongly regular graph if and only if a = b.

Proof A rank 4 ISA has s321 6= 0, hence v1 = v2 by Lemma 4 if it is the
CCL of a regular weight. Conversely, if a = b in the matrices of [7], a simple
calculation of the parameters for the weighted fusion {1−2+}{3+} shows that
it is coherent. By Proposition 1 it is regular.

Central to the work of Chang and Huang are the Higmanian SRGs that
occur as Γ1 or Γ2 in a rank 4 ISA. The ISA is said to be of strongly regular
type when either of these is strongly regular (and primitive).

Theorem 3 ([7], Theorem 3.1) The vertices of a Higmanian SRG may be
partitioned into cocliques meeting the Hoffman bound.

Remark: The Hoffman cocliques are in fact the maximal cliques of Γ3.
When an ISA is the closure of a regular weight, we may check using the

intersection matrices in this section to see whether it is strongly regular type.
If Γ1 is strongly regular, then the fusion {1}{23} must be coherent, and this
requires

s111 =
t

2

(
t(r − 1)

2(t− 1)
− 1

)
.

Similarly, Γ2 is strongly regular when

s111 =
t(r − 1)(t− 2)

4(t− 1)

and both conditions hold if and only if r = t.

Lemma 6 A Higmanian SRG Γ arises from the coherent closure of a weighted
SRG only if Γ lies in the switching class of a regular two-graph.

Proof By Theorem 2 we know a = b in the associated ISA. But a Higmanian
SRG has parameters (n, k; r, s) = (n, ta; tb/v,−a) or (n, tb; b,−ta/v), from [7,
Section 2]. Substituting a = b we find

(n, k, λ, µ) =

(
2(k − s), k, s(k + 2s+ 1)

2s+ 1
,
k(s+ 1)

2s+ 1

)
,

and these SRG parameters satisfy the conditions of Proposition 2.

It is a simple task to check directly that the weighted fusion {1−2+3+}
gives a regular two-graph if and only if Γ1 is an SRG. However, the converse
of Lemma 6 is false, as there exist Higmanian SRGs with a 6= b that lie in the
switching classes of regular two-graphs. The latin square parameters L1,2(5)
yield two such schemes.
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Some SRGs with the parameters of Lemma 6 are given in Table 1. Not
all are Higmanian. The two-graph condition is not sufficient, as evidenced by
SRGs in this list which are Higmanian but do not arise as closures. “Non-
Higmanian” indicates that there is no rank 4 scheme containing the SRG; for
the Higmanian entries we indicate by “closure” if the rank 4 scheme is the
CCL of a regular weight. We make no claim about existence here.

Table 1 SRGs in regular two-graphs

(n,k, λ, µ) Type
(10,3,0,1) non-Higmanian
(16,5,0,2) amorphic
(16,6,2,2) amorphic, closure L1,2(4)

(26,10,3,4) non-Higmanian
(28,12,6,4) Higmanian, closure
(36,14,4,6) non-Higmanian
(36,15,6,6) amorphic, closure L1,3(6); also in L2,2(6); neither exists
(50,21,8,9) non-Higmanian

(64,27,10,12) amorphic, occurs in another primitive scheme
(64,28,12,12) amorphic, closure L1,4(8), occurs in primitive L2,3(8)
(76,30,8,14) non-Higmanian
(76,35,18,4) non-Higmanian

(82,36,15,16) non-Higmanian
(96,45,24,18) Higmanian, closure, occurs also in primitive scheme

(100,44,18,20) amorphic, occurs also in primitive scheme
(100,45,20,20) amorphic, closure L1,5(10), occurs in L2,4(10), L3,3(10)

8.2.1 Amorphic schemes

Suppose now that both Γ1 and Γ2 are strongly regular (so we have an amorphic
scheme, allowing that Γ3 is not connected). By Theorem 4.1 of [9], the SRG
parameters for all three graphs have Latin square type:

(n2, li(n− 1), n− 2 + (li − 1)(li − 2), li(li − 1)), i = 1, 2, 3

or negative Latin square type:

(n2, li(n+ 1),−n− 2 + (li + 1)(li + 2), li(li + 1)), i = 1, 2, 3.

In our case, negative type is ruled out because v3 = t − 1 = n − 1. This
implies also that l3 = 1. From M1 we see that Γ1 must have parameters
{λ, µ} = {s111, s211 = n(n − 2)/4} and k = n(n − 1)/2. Then l1 = n/2 and we
obtain

Γ1 = SRG

(
n2,

n(n− 1)

2
,
n(n− 2)

4
,
n(n− 2)

4

)
.

We see, similarly, that Γ2 has the same parameters.



26 A.D. Sankey

Theorem 4 An amorphic rank 4 scheme is the coherent closure of a weighted
SRG if and only if it has Latin square type L1,m(2m).

Proof A Latin square scheme L1,m(2m) as defined in [9] has two relations with
SRG parameters

(4m2,m(2m− 1),m(m− 1),m(m− 1))

and the third a disjoint union of complete graphs.

I A1 A2 A3 mi

ζ1 1 m(2m− 1) m(2m− 1) 2m− 1 1
ζ2 1 −m −m 2m− 1 2m− 1
ζ3 1 m −m −1 m(2m− 1)
ζ4 1 −m m −1 m(2m− 1)

Substituting n = 2m in the argument above shows that an amorphic CCL
has this type. Conversely, given a Latin square type scheme with the stated
parameters, the intersection matrices with an appropriate ordering are the Mi

given in this section, with t = r = n and s111 = n(n − 2)/4. From these it is
clear that the scheme fuses to a regular weight on Γ1 + Γ2 with

Mω
1 =

 1
n(n− 1) 0 −n

−1

 and Mω
2 =

 1
−1

n− 1 n− 2

 .

8.3 Case s123 = 0.

Suppose now that s123 = 0. Immediately, β1
12 = p112 = s113 = t−1, β2

11 = t(r−1).
As before, β2

22 = p222 = s333 = t − 2. Again let t be the size of the Γ3-cliques.
Given a vertex x and a clique C not containing x, we see that x has either no
Γ1 neighbours in C, or is adjacent to every vertex in C. The same is true for
Γ2, thus the quotient of this rank 4 scheme by Γ0∪Γ3 is well defined, and yields
an SRG with (ñ, k̃, λ̃, µ̃) = (r, a, s111/t, s

2
11/t). Here Γ3 is a union of r cliques

of size t, and a is determined by v1 = at. We find v2 = t(r − a− 1). Observe,
v1 6= v2, since β1

12 = β2
11 =⇒ t− 1 = t(r− 1). This implies t(r− 2) = −1, and

the only solution is t = r = 1.
The weighted adjacency matrices are

Mω
1 =

 1
t(r − 1) β1

11 −t(r − 1)
t− 1

 Mω
2 =

 1
t− 1

t− 1 t− 2

 .

Example 1 The Petersen graph SRG(10,3,0,1) is obtained as a quotient from
a scheme on 30 points with t = 3, a = 3, v1 = 9, v2 = 18, which also fuses to
a weighted SRG, the complement of Γ3.
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Substituting s112 = s211v2/v1 into (11a) we get

s112 = s211
r − 1− a

a
.

So

2(r − 1− a)

a
s211 = s211 + s222

and from this we obtain

s222 =
2r − 2− 3a

a
s211.

However, we may compute s222 using the SRG parameters (i.e., this is the µ
parameter, divided by t, for the complement of the quotient by Γ3). We obtain

s222 =
t(r − 2a− 2)(2r − 3a− 2)

2(r − 2a− 1)
, s112 =

t(r − a− 1)(r − 2a− 2)

2(r − 2a− 1)
,

and s211 =
at(r − 2a− 2)

2(r − 2a− 1)
.

Note that r − 2a− 1 6= 0 since v1 6= v2. Since r − 2a− 1 is relatively prime to
r − 2a− 2, it divides both t(r − a− 1) and at, and therefore divides t(r − 1).

In a similar way, we determine

s111 =
t(r − 2a)(3a− r + 1)

2(r − 2a− 1)
and s122 =

t(r − 2a)(r − a− 1)

2(r − 2a− 1)
.

Hence, Γ̃ satisfies

λ̃ =
(ñ− 2k̃)(3k̃ − ñ+ 1)

2(ñ− 2k̃ − 1)
, µ̃ =

k̃(ñ− 2k̃ − 2)

2(ñ− 2k̃ − 1)
.

Theorem 5 If S =CCL(Aω) is a rank 4 association scheme with notation as
above and s123 = 0, then S is Kt o Γ̃ , with Γ̃ = SRG(ñ, k̃, λ̃, µ̃) = as above,
ñ = r, and k̃ = a.

Example 2 The SRGs meeting these conditions include the Petersen graph
(10, 3, 0, 1); the Clebsch graph (16, 5, 0, 2) ; the Lattice and Shrikhande graphs
(16, 6, 2, 2); the Paulus graph (26, 10, 3, 4); the Chang and the T (8) graphs
(28, 12, 6, 4); and the complete bipartite graphs. See [4], [22], [23], [17] for
more.
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9 Main theorem

We are now able to classify the rank 4 CCLs into the types depicted in Figure
3, namely: (I) distance-regular Taylor graph schemes, (II) amorphic schemes,
(III) Higmanian but not amorphic schemes, and (IV) non-Higmanian schemes,
in which both A1 and A2 have four distinct eigenvalues.

Theorem 6 Let B be the coherent closure of a strongly regular graph Γ with
a regular weight ω, and notation as above. If B has rank 4 then it is symmetric
and imprimitive with one relation, say Γ3, a disjoint union of cliques of size
t > 1. Then

1. B is metric if and only if t = 2 and s123 6= 0, and in that case Γ1 is an
antipodal distance-regular graph with distance array {b0, b1, 1; 1, b1, b0}.

2. B is a wreath product if and only if s123 = 0, and in that case B is Kt o Γ̃ ,
Γ̃ is SRG(ñ, k̃, λ̃, µ̃) as in Theorem 5.

3. B is Higmanian if and only if Γ1 or Γ2 is strongly regular with Hoffman
partition given by the connected components of Γ3 and lies in the switching
class of a regular two-graph.

4. B is amorphic if and only if it has latin square type L1,m(2m).
5. If none of the above, then Γ1 and Γ2 each have 4 distinct eigenvalues and

are cospectral unless all eigenvalues are integral.

Proof The first statement follows from Lemma 4. For (1), Theorem 1 supplies
one direction. On the other hand, suppose t = 2 in an ISA scheme, and observe
that M1 is tri-diagonal, with s211 6= 0 and s123 6= 0. This implies that B is
metric, and the parameters bi and ci are given by sii+1,1 and sii−1,1 respectively,
resulting in the stated distance array.

Part (2) is Theorem 5 combined with the observation that s123 must be 0
in a wreath product given that B1 = A1 ⊗ J, B2 = A2 ⊗ J, B3 = I⊗ (J− I)
with vertices and indices ordered suitably.

Part (3) follows from [7, Thm. 3.1] and Lemma 6; part (4) from Theorem
4.

To prove (5), we suppose B is neither Higmanian nor a wreath product.
Then both Γ1 and Γ2 have four distinct eigenvalues and s123 6= 0 so we are in
the case of Section 8.2. The eigenvalues of Γ1 and Γ2 are ±x1,±x2, where x1
and x2 are the roots of (15). Since zi ∈ Z, we see by (16) that either x1 and x2
are rational, in which case they are integers as are the remaining eigenvalues
(shown in the character-multiplicity table), or 2s211− t

2 (r−2) = 0. In the latter
case, the coefficient of x in (15) is 0, so x1 = −x2 and we see that Γ1 and Γ2

are cospectral.

9.1 Parameters

Using tables of rank 4 association schemes from [9] and personal communica-
tion with E. R. van Dam, we list the feasible parameters for rank 4 CCLs of
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weighted SRGs on up to 100 vertices for the Taylor graphs and 200 for the
others, along with the number of schemes known. A ‘?’ in the table indicates
that the number of schemes is unknown. We refer to [9] and the citations
therein for additional information and for clarity on the notations used in the
final column.

Table 2 Parameters of rank 4 closures

n t r s111 type cospectral # notes
6 2 3 0 I 1 C6 ' R(3, 2)
8 2 4 0 I 1 Cube ' R(4, 2)

20 2 10 4 I y 1 J(6, 3)
32 2 16 6 I 1 2(GQ(2, 2) + 1)
52 2 26 12 I y 4
56 2 28 10 I 1 2(Schlafli+1)
72 2 36 16 I ≥ 227
90 2 45 18 I 0

100 2 50 24 I y ≥ 18 2(P (49) + 1)
4 2 2 0 II y 1 L1,1(2) ' R(2, 2)

16 4 4 2 II y 4 L1,2(4)
36 6 6 6 II y 0 L1,3(6)
64 8 8 12 II y ≥ 1 L1,4(8)

4m2 2m 2m m2 −m II y ? L1,m(2m),m ≥ 5
28 4 7 4 III 56 From T (8), Chang
96 6 16 18 III ?

120 8 15 24 III ?
126 6 21 24 III ?
190 10 19 40 III ?
40 4 10 8 IV y 0
64 4 16 14 IV y ?
88 4 22 20 IV y 0

100 4 25 21 IV ?
112 4 28 26 IV y ?
136 4 34 32 IV y ?
156 6 26 36 IV y ?
160 4 40 38 IV y ?
176 8 22 39 IV ?
176 8 22 40 IV y ?
184 4 46 44 IV y ?
186 6 31 42 IV ?
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